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Abstract
Background and objective: Multistate models, which allow the prediction of complex5

multistate survival processes such as multimorbidity, or recovery, relapse and death following6

treatment for cancer, are being used for clinical prediction. It is paramount to evaluate the7

calibration (as well as other metrics) of a risk prediction model before implementation of the8

model. While there are a number of software applications available for developing multistate9

models, currently no software exists to aid in assessing the calibration of a multistate model,10

and as a result evaluation of model performance is uncommon. calibmsm has been developed11

to fill this gap.12

Methods: Assessing the calibration of predicted transition probabilities between any two13

states is made possible through three approaches. The first two utilise calibration techniques14

for binary and multinomial logistic regression models in combination with inverse probability15

of censoring weights, whereas the third utilises psuedo-values. All methods are implemented in16

conjunction with landmarking to allow calibration assessment of predictions made at any time17

beyond the start of follow up. This study focuses on calibration curves, but the methodological18

framework also allows estimation of calibration slopes and intercepts.19

Results: This article provides a comprehensive example on how to use calibmsm to assess the20

calibration of a multistate model developed to predict recovery, adverse events, relapse and21

survival in patients with blood cancer after a transplantation. The calibration plots indicate22

that predictions of relapse made at the time of transplant are poorly calibrated, however23

predictions of death are well calibrated. The calibration of all predictions made at 100 days24

post transplant appear to be poor, although a larger validation sample is required to make25

stronger conclusions.26

Conclusions: calibmsm is an R package which allows users to assess the calibration of27

predicted transition probabilities from a multistate model. Evaluation of model performance28

is a key step in the pathway to model implementation, yet evaluation of the performance of29

predictions from multistate models is not common. We hope availability of software will help30
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model developers evaluate the calibration of models being developed.31

Keywords: Clinical prediction models, calibration, model evauation, multistate, multi-state,32

R33

1. Introduction
Risk prediction models enable the prediction of clinical events in either diagnostic or prog-34

nostic settings (van Smeden et al. 2021) and are used widely to inform clinical practice. A35

multistate model (Putter et al. 2007) may be used when there are multiple outcomes of in-36

terest, or when a single outcome of interest may be reached via intermediate states. For37

example, prediction of death after local recurrence or distant metastasis in patients with38

breast cancer following surgery (Putter et al. 2006); prediction of death following progression39

of chronic kidney disease (Lintu et al. 2022); prediction of non-AIDS events and death in40

individuals living with HIV (Masia et al. 2017). Using a multistate model for prediction is41

important when the development of an intermediate condition occurring post index date may42

have an impact on the risk of future outcomes of interest. Risk prediction models developed43

for use in clinical practice should be evaluated in a relevant cohort, or preferably multiple44

settings/cohorts, prior to implementation (Steyerberg and Harrell Jr 2016). If the intended45

use of this model is known, targeted validation in a specific setting may be preferred (Sperrin46

et al. 2022). A key part of the validation process is assessment of the calibration of the model47

(Van Calster et al. 2019). Calibration assesses whether the predicted risks match the observed48

event rates in the cohort of interest. Ideally calibration curves should be produced, which49

estimate observed event rates as a function the predicted risks over the entire distribution of50

predicted risk. This corresponds to a moderate assessment of calibration (Van Calster et al.51

2016). Methodology on this topic is well developed for binary outcomes (Van Calster et al.52

2016), survival outcomes (Crowson et al. 2016; Austin et al. 2020) and survival outcomes in53

the presence of competing risks (Gerds et al. 2014; Austin et al. 2022), however less so for54

multistate models, where there is often interest in prediction of more than one outcome state,55

and in predictions made at landmark times.56

The R (R Core Team 2023) package mstate (de Wreede et al. 2011) provides a compre-57

hensive set of tools to develop a multistate model and estimate patient-specific predictions58

for a continuously observed multistate survival process. mstate focuses on non-parametric59

and semi-parametric multistate models where the cause-specific hazards have been fitted us-60

ing cox-proportional hazards models. The flexsurv package (Jackson 2016) builds on the61

functionality of mstate, allowing users to fit parametric multistate models (still using the62

cause-specific hazards approach), as well as an approach that uses mixture models. Both63

mstate and flexsurvreg allow fitting of clock-forward (Markov) and clock reset (Semi-Markov)64

models. The SemiMarkov package (Król and Saint-Pierre 2015) contains functions specif-65

ically for fitting semi-Markov models. The msm package (Jackson 2011) focuses on fit-66

ting multistate models to continuous time processes that are observed at arbitrary times67

(panel data). The flexmsm package provides a general estimation framework for multistate68

Markov processes, with flexible specification of the transition intensities. Transition intensi-69

ties can be specified through Generalised Additive Models, and allows models with forward70

and backward transitions to be fitted. The Lexis functions from the Epi package provide71

a way to represent and manipulate data from multistate models, and provides an inter-72

face to the mstate. For a full list of packages available for fitting multistate models, see73
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Figure 1: A six-state model for leukemia patients after bone marrow transplantation. Figure
taken from (de Wreede et al. 2011).

https://cran.r-project.org/web/views/Survival.html.74

Despite a wide range of packages for developing multistate models, currently no software75

exists to aid researchers in assessing the calibration of a multistate model that has been76

developed for the purposes of individual risk prediction. The R package calibmsm has been77

developed to enable researchers to estimate calibration curves and scatter plots using three78

approaches outlined in Pate et al. (2024), which focused on assessing the calibration of the79

transition probabilities out of the starting state. The work in this paper extends the framework80

to assess the calibration of transition probabilities out of any state j at any time s using81

landmarking (van Houwelingen 2007; Dafni 2011), provides more details on estimation of the82

inverse-probability of censoring weights (where relevant), and demonstrates the process for83

estimating confidence intervals. calibmsm is available from the Comprehensive R Archive84

Network at https://CRAN.R-project.org/package=calibmsm.85

de Wreede et al. (2011) used data from the European Society for Blood and Marrow Trans-86

plantation (EBMT 2023) to showcase how to develop a multistate model for clinical prediction87

of outcomes after bone morrow transplantation in leukemia patients (Figure 1). In this study,88

we show how to assess the calibration of a model developed on the same EBMT data as a way89

of illustrating the syntax and workflows of calibmsm. This clinical example also highlights90

some important differences between the methods in how they deal with informative censor-91

ing and computational feasibility, which may impact future uptake of the methods. Details92

on the methodology are given in section 2. The clinical example, including steps for data93

preparation and production of calibration plots are given in section 3. Section 4 contains a94

discussion and summary.95

2. Methods and Theory

2.1. Setup96

Let X(t) ∈ {1, ...,K} be a multistate survival process with K states. We assume a multistate
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model has already been developed and we want to assess the calibration of the predicted
transition probabilities, p̂j,k(s, t), in a cohort of interest. The transition probabilities are the
probability of being in state k at time t, if in state j at time s, where s < t. To assess the
calibration of the multistate model, we must estimate observed event probabilities:

oj,k(s, t) = P [X(t) = k|X(s) = j, p̂j,k(s, t)].

In a well calibrated model, the transition probabilities will be equal to the observed event97

probabilities.98

In the absence of censoring, oj,k(s, t) can be estimated using cross sectional calibration tech-99

niques in a landmark (van Houwelingen 2007; Dafni 2011) cohort of individuals who are in100

state j at time s (i.e. methods to assess the calibration of models predicting binary or multi-101

nomial outcomes). In the presence of censoring, calibration must be assessed in this landmark102

cohort of individuals either using these cross sectional techniques in combination with inverse103

probability of censoring weights, or through pseudo-values. These approaches are detailed in104

sections 2.2 - 2.6.105

2.2. Binary logistic regression with inverse probability of censoring weights106

(BLR-IPCW) calibration curves107

The first approach produces calibration curves using a framework for binary logistic regression108

models in conjunction with inverse probability of censoring weights to account for informative109

censoring. Let Ik(t) be an indicator for whether an individual is in state k at time t. Ik(t)110

is then modeled using a flexible approach with p̂j,k(s, t) as the sole predictor. This model is111

fit in the landmark cohort (in state j at time s) of individuals who are also still uncensored112

at time t. This cohort is weighted using inverse probability of censoring weights (see section113

2.4). We suggest using a loess smoother (Austin and Steyerberg 2014):114

Ik(t) = loess(p̂j,k(s, t)), (1)

or a logistic regression model with restricted cubic splines (Harrell 2015):115

logit(Ik(t)) = rcs(logit(p̂j,k(s, t))). (2)

Any flexible model for binary outcomes could be used, but these are the most common and116

are implemented in this package. Observed event probabilities ôj,k(s, t) are then estimated117

as fitted values from these models. The calibration curve is plotted using the set of points118

{p̂j,k(s, t), ôj,k(s, t)}. To obtain unbiased calibration curves, the assumption that each outcome119

Ik(t) is independent from the censoring mechanism in the reweighted population must hold.120

2.3. Multinomial logistic regression with inverse probability of censoring121

weights (MLR-IPCW) calibration scatter plots122

The second approach produces calibration scatter plots using a framework for multinomial123

logistic regression models with inverse probability of censoring weights (MLR-IPCW). Let124

IX(t) be an multinomial indicator variable taking values IX(t) ∈ {1, ...,K} such that IX(t) =125

k if an individual is in state k at time t. The nominal recalibration framework of Van Hoorde126

et al. (2014, 2015) is then applied in the landmark cohort of individuals uncensored at time127
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t, weighted using inverse probability of censoring weights (section 2.4). First calculate the128

log-ratios of the predicted transition probabilities:129

L̂P k = ln

(
p̂j,k(s, t)
p̂j,kref

(s, t)

)
,

Then fit the following multinomial logistic regression model:130

ln

(
P [IX(t) = k]
P [IX(t) = kref ]

)
= αk +

K∑
h=2

βk,h ∗ sk(L̂P h), (3)

where kref is an arbitrary reference category which can be reached from state j, k 6= kref131

takes values in the set of states that can be reached from state j, and where s is a vector132

spline smoother (Yee 2015). Observed event probabilities ôj,k(s, t) are then estimated as133

fitted values from this model. This results in a calibration scatter plot rather than a curve134

due to all states being modeled simultaneously, as opposed to BLR-IPCW, which is a "one135

vs all" approach. The scatter occurs because the observed event probabilities for state k vary136

depending on the predicted transition probabilities of the other states. This is a stronger137

(Van Calster et al. 2016) form of calibration than that evaluated by BLR-IPCW, and will138

also result in observed event probabilities which sum to 1. In future iterations of calibmsm139

functionality will be added to produce smoothed curves estimated from these scatter plots.140

To obtain unbiased calibration curves, the assumption that the outcome IX(t) is independent141

from the censoring mechanism in the reweighted population must hold.142

2.4. Estimation of the inverse probability of censoring weights143

The estimand for the weights is wj(s, t), the inverse of the probability of being uncensored at144

time t if in state j at time s:145

wj(s, t) = 1
P [tcens > t|t > s,X(s) = j,Z,X(t)] ,

where X(t) denotes the history of the multistate survival process up to time t, including146

the transition times, and Z is a set of baseline predictor variables believed to be predictive147

of the censoring mechanism. Note that Z may be the same as, but is not restricted to,148

the variables used for prediction when developing the multistate model. First the estimator149

P̂ [tcens > t|t > s,X(s) = j,Z] is calculated by developing an appropriate survival model.150

The outcome in this model is the time until censoring occurs. Moving into an absorbing state151

prevents censoring from happening and is treated as a censoring mechanism in this model152

(i.e. a competing risks approach is not taken when fitting this model). X(t) is explicitly153

conditioned on when defining wj(s, t) because the weights must reflect that censoring can no154

longer be observed for an individual if they enter an absorbing state at some time s < tabs < t.155

Therefore156

P̂ [tcens > t|t > s,X(s) = j,Z,X(t)] = P̂ [tcens > min{t, tabs}|t > s,X(s) = j,Z]

In calibmsm, unless otherwise specified, P̂ [tcens > t|t > s,X(s) = j,Z] is estimated using a157

cox proportional hazards model where all predictors Z are assumed to have a linear effect on158
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the log-hazard. This is highly restrictive, users can therefore also input their own vector of159

weights, which is strongly recommended. Given the BLR-IPCW and MLR-IPCW approaches160

are both reliant on correct estimation of the weights, we encourage users to take the time to161

carefully estimate the inverse probability of censoring weights using a well specified model.162

The limitations of using the calibmsm internal functions for estimating the weights in this163

clinical example (section 3) are discussed in more detail later, and explored in vignette-164

Evaluation-of-estimation-of-IPCWs.165

Stabilised weights can be estimated by multiplying by the weights wj(s, t) by the mean prob-166

ability of being uncensored:167

wstabj (s, t) = P [tcens > t|t > s,X(s) = j]
P [tcens > t|t > s,X(s) = j,Z,X(t)] .

The numerator can be estimated using an intercept only model, and note there is no depen-168

dence on X(t).169

Another option is to estimate w(s, t), which is the inverse of the probability of being uncen-170

sored at time t if uncensored at time s:171

w(s, t) = 1
P [tcens > t|t > s,Z,X(t)] .

This can be estimated using the same approach as for wj(s, t), except there is no requirement172

to be in state j when landmarking at time s. If the censoring mechanism is non-informative173

after conditioning on Z, then w(s, t) = wj(s, t), and any consistent estimator for w(s, t) will174

be a consistent estimator of wj(s, t). The advantage is that ŵ(s, t) is calculated by developing175

a model in the cohort of individuals uncensored at time s, which is a larger cohort than those176

uncensored and in state j at time s. Therefore ŵ(s, t) will be a more precise estimator than177

ŵj(s, t). On the contrary, if the assumption of non-informative censoring after conditioning on178

Z does not hold, there is a risk of bias in estimation of the weights. We therefore recommend179

using the estimator wj(s, t) unless sample size (number of individuals in state j at time s)180

is low, which may be assessed using sample size formula for prediction models with time-to-181

event outcomes (Riley et al. 2019). If the sample size is deemed insufficient, one may consider182

using w(s, t), but the risk of bias associated with this estimator must be carefully considered.183

Finally, we state the importance of using inverse probability of censoring weights, even if the184

censoring mechanism is believed to be completely non-informative (i.e. happens at random).185

All multistate models must have an absorbing state, entry into which prevents censoring from186

happening. This induces a dependence between the outcome and the censoring mechanism187

which must be adjusted for using inverse probability of censoring weights. This is issue was188

highlighted in the supplementary material of previous work (Pate et al. 2024)189

2.5. Pseudo-value calibration plots190

The third approach produces calibration curves using pseudo-values (Andersen and Pohar191

Perme 2010; Andersen et al. 2022). Pseudo-values can be used in place of the outcome of192

interest in a regression model if some outcomes are not observed due to right censoring. This193

is the case in models (1) and (2). For certain estimators θ̂ (where θ estimates the expectation194

of the outcome it is replacing), the pseudo-value for individual i is defined as:195
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θ̂i = n ∗ θ̂ − (n− 1) ∗ θ̂−i,

where θ̂−i is equal to θ̂ estimated in a cohort without individual i. One such estimator for196

the outcomes in models (1) and (2) given the underlying multistate survival process, is the197

Landmark Aalen-Johansen estimator (Putter and Spitoni 2018), which estimates the expec-198

tation of Ik(t) in the landmark cohort of individuals in which calibration is being assessed.199

The resulting pseudo-values are a vector with K elements, one for each possible transition,200

for every individual i. These pseudo-values can replace the outcome Ik(t) in equations (1)201

and (2) in order to estimate oj,k(s, t).202

Pseudo-values are based on the same assumptions as the underlying estimator θ̂. The Land-203

mark Aalen-Johansen estimator is valid for both Markov and non-Markov multistate models.204

However, it does make the assumption that the multistate survival process and the censoring205

distribution are independent (uninformative censoring). The approach to alleviate this is to206

estimate the pseudo-values within sub-groups of individuals, now making the assumption that207

censoring is non-informative within the specified subgroups. This can be done by calculating208

the pseudo-values within subgroups defined by baseline predictors, or subgroups defined by209

the predicted transition probabilities p̂j,k(s, t). Both options are implemented in this package.210

When pseudo-values are calculated within subgroups, they are still used as the outcome in211

models (1) and (2) in the same way. Note that the pseudo-values θ̂i are continuous, as op-212

posed to binary Ik(t), but the link function in model (2) remains the same to ensure ôj,k(s, t)213

are between zero and one.214

2.6. Estimation of confidence intervals215

Confidence intervals for both BLR-IPCW and pseudo-value calibration curves can be esti-216

mated using bootstrapping. While theoretically feasible, it is currently unclear how to present217

confidence intervals for each data point in the calibration scatter plots produced by MLR-218

IPCW, and therefore these are omitted. A process for estimating the confidence intervals219

around the BLR-IPCW calibration curves is as follows:220

1. Resample validation dataset with replacement221

2. Landmark the dataset for assessment of calibration222

3. Calculate inverse probability of censoring weights223

4. Fit the preferred calibration model in the landmarked dataset (restricted cubic splines224

or loess smoother)225

5. Generate observed event probabilities for a fixed vector of predicted transition prob-226

abilities (specifically the predicted transition probabilities from the non-bootstrapped227

landmark validation dataset)228

This will produce a number of bootstrapped calibration curves, all plotted over the same229

vectors of predicted transition probabilities. Taking the α
2 and

(
1− α

2
)
percentiles of the230

observed event probabilities for each predicted transition probability gives the required 1−α231

confidence interval around the estimated calibration curve. To estimate confidence intervals232
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for the pseudo-value calibration curves using bootstrapping, the same procedure is applied233

except the third step is replaced with ’calculate the pseudo-values within the landmarked234

bootstrapped dataset’. This will be highly computationally demanding as the pseudo-values235

must be estimated in every bootstrap dataset.236

If using the pseudo-value method, confidence intervals can however be calculated using closed237

form estimates of the standard error when making predictions of the observed event proba-238

bilities (i.e. when obtaining fitted values from models (1) or (2)). We recommended this due239

to the computational burden of bootstrapping the confidence intervals around the pseudo-240

value calibration curves. There are a number of issues with estimating parametric confidence241

intervals for the BLR-IPCW calibration curves. Firstly, a robust sandwich-type estimator242

should be used to estimate the standard error Hernan and Robins (2020), which are known243

to result in conservative confidence intervals, i.e. too large Hernan and Robins (2020); Austin244

et al. (2020). On the contrary, the size of the confidence interval will be underestimated as245

uncertainty in estimation of the weights is not considered. Due to the impact of these two fac-246

tors, we recommend using bootstrapping to estimate the confidence intervals for BLR-IPCW247

calibration curves.248

[Description of package functions and interface249

The procedure for producing calibration plots requires the use of two functions. The first250

function, calib_msm, calculates the data for the calibration plot using the methods described251

in section 2. The second function, plot, produces the plots. Plot is an S3 generic written252

for objects of class calib_blr, calib_mlr or calib_pv, and produces the calibration plots253

using ggplot2 (Wickham 2016). Separating these processes allows users to manually estimate254

bootstrapped calibration curves (see vignette-BLR-IPCW-manual-bootstrap) using the out-255

put from calib_msm. It also allows users the flexibility of producing their own plots utilising256

the full functionality of ggplot2, rather than being reliant on the S3 generics provided.257

The validation cohort must be provided to calib_msm in two different formats. The data.raw258

argument requires a data.frame (one observation per individual) and is used to fit the calibra-259

tion models. For methods BLR-IPCW and MLR-IPCW, data.raw should contain variables260

dtcens (censoring time) and dtcens.s (censoring indicator, dtcens.s = 1 if the individual261

is censored at time dtcens, dtcens.s = 0 otherwise), plus any baseline predictors Z used262

to estimate the weights. For the pseudo-value approach, this dataset should contain any263

baseline predictors Z which variables will be grouped by before calculating the pseudo-values.264

The data.ms argument requires a dataset of class msdata, which is used to implement the265

landmarking and estimate the Aalen-Johansen etimator for the pseudo-value approach. A266

dataset of this class can be produced using the package mstate (de Wreede et al. 2011). Both267

data.ms and data.raw should contain corresponding patient ID variables id. The predicted268

transition probabilities out of state j at time s must then be specified through the tp.pred269

argument, which must contain a column for each transition k, even if the transition from j270

to k has zero probability. The rows in tp.pred must be ordered in the same way as those in271

data.raw. The datasets described in section 3.1 meet these criteria.272

The methods in calibmsm require continuously observed data, however are agnostic to the273

type of multistate model used to estimate the transition probabilities. This includes Markov,274

Semi-Markov or non-Markov models, and non-parametric, semi-parametric or parametric275

models. A dataset of class msdata from mstate is required as input, however this is only276

required to apply landmarking, and determine the occupied state for each individual at time277
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t. The estimated transition probabilities, supplied through tp.pred can be estimated using278

any statistical software.279

3. Clinical example and typical program run

3.1. Clinical setting and data preperation280

We utilise data from the European Society for Blood and Marrow Transplantation (EBMT281

2023), containing multistate survival data after a transplant for patients with blood cancer.282

The start of follow up is the day of the transplant and the initial state is alive and in remission.283

There are three intermediate events (2: recovery, 3: adverse event, or 4: recovery + adverse284

event), and two absorbing states (5: relapse and 6: death). This data is available from the285

mstate package (de Wreede et al. 2011). We assume the user of calibmsm has experience with286

handling the type of data used to develop a multistate model as outlined by de Wreede et al.287

(2011).288

Four datasets are provided to enable assessment of a multistate model fitted to these data.289

The code for deriving all these datasets is provided in the source code for calibmsm. The290

first is ebmtcal, which is the same as the ebmt dataset provided in mstate , with two extra291

variables derived: time until censoring (dtcens) and an indicator for whether censoring was292

observed (dtcens.s = 1) or an absorbing state was entered (dtcens.s = 0). This dataset293

contains baseline information on year of transplant (year), age at transplant (age), prophy-294

laxis given (proph), and whether the donor was gender matched (match). The second dataset295

provided is msebmtcal, which is the ebmt dataset converted into a dataset of class msdata296

using the processes and functions in the package mstate (de Wreede et al. 2011). It con-297

tains all transition times, an event indicator for each transition, as well as a trans attribute298

containing the transition matrix.299

R> library(calibmsm)
R> data("ebmtcal")
R> head(ebmtcal)

id rec rec.s ae ae.s recae recae.s rel rel.s srv srv.s
1 1 22 1 995 0 995 0 995 0 995 0
2 2 29 1 12 1 29 1 422 1 579 1
3 3 1264 0 27 1 1264 0 1264 0 1264 0
4 4 50 1 42 1 50 1 84 1 117 1
5 5 22 1 1133 0 1133 0 114 1 1133 0
6 6 33 1 27 1 33 1 1427 0 1427 0

year agecl proph match dtcens dtcens.s
1 1995-1998 20-40 no no gender mismatch 995 1
2 1995-1998 20-40 no no gender mismatch 422 0
3 1995-1998 20-40 no no gender mismatch 1264 1
4 1995-1998 20-40 no gender mismatch 84 0
5 1995-1998 >40 no gender mismatch 114 0
6 1995-1998 20-40 no no gender mismatch 1427 1
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R> data("msebmtcal")
R> subset(msebmtcal, id %in% c(1,2,3))

id from to trans Tstart Tstop time status
1 1 1 2 1 0 22 22 1
2 1 1 3 2 0 22 22 0
3 1 1 5 3 0 22 22 0
4 1 1 6 4 0 22 22 0
5 1 2 4 5 22 995 973 0
6 1 2 5 6 22 995 973 0
7 1 2 6 7 22 995 973 0
8 2 1 2 1 0 12 12 0
9 2 1 3 2 0 12 12 1
10 2 1 5 3 0 12 12 0
11 2 1 6 4 0 12 12 0
12 2 3 4 8 12 29 17 1
13 2 3 5 9 12 29 17 0
14 2 3 6 10 12 29 17 0
15 2 4 5 11 29 422 393 1
16 2 4 6 12 29 422 393 0
17 3 1 2 1 0 27 27 0
18 3 1 3 2 0 27 27 1
19 3 1 5 3 0 27 27 0
20 3 1 6 4 0 27 27 0
21 3 3 4 8 27 1264 1237 0
22 3 3 5 9 27 1264 1237 0
23 3 3 6 10 27 1264 1237 0

In the work of de Wreede et al. (2011), the focus is on predicting transition probabilities made300

at times s = 0 and s = 100 days, across a range of follow up times t, and comparing prognosis301

for patients in different states j. In this study we also focus on assessing the calibration302

of the transition probabilities made at these times. We assess calibration of the transition303

probabilities at t = 5 years, a common follow up time for cancer prognosis, but calibration304

of the model may vary for other values of t. We estimate transition probabilities for each305

individual by developing a model as demonstrated in de Wreede et al. (2011), following the306

theory of Putter et al. (2007).307

The predicted transitions probabilities from each state j at times s = 0 and s = 100 are308

contained in stacked datasets tps0 and tps100 respectively. A leave-one-out approach was309

used when estimating these transition probabilities. This means each individual was removed310

from the development dataset when fitting the multistate model to estimate their transition311

probabilities. This approach allows validation to be assessed in the same dataset that the312

model was developed with minimal levels of in-sample optimism. Note that for tps100 the313

predicted probabilities for some states k are equal to 0. This is because no individuals in314

state j = 1 at time s = 100 transition into states 3 or 4. This may be due to the definition315

of an adverse event having to occur within a certain number of days post transplant.316

R> data("tps0")
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R> head(tps0)

id pstate1 pstate2 pstate3 pstate4 pstate5 pstate6
1 1 0.1139726 0.2295006 0.08450376 0.2326861 0.1504855 0.1888514
2 2 0.1140189 0.2316569 0.08442692 0.2328398 0.1481977 0.1888598
3 3 0.1136646 0.2317636 0.08274331 0.2325663 0.1504787 0.1887834
4 4 0.1383878 0.1836189 0.07579429 0.2179331 0.1538475 0.2304185
5 5 0.1233226 0.1609740 0.05508100 0.1828176 0.1425950 0.3352099
6 6 0.1136646 0.2317636 0.08462424 0.2305854 0.1505534 0.1888087

se1 se2 se3 se4 se5 se6 j
1 0.01291133 0.02369584 0.01257251 0.02323376 0.01648630 0.01601795 1
2 0.01291552 0.02374329 0.01256056 0.02324869 0.01632797 0.01603703 1
3 0.01289444 0.02375770 0.01245752 0.02322375 0.01647890 0.01601525 1
4 0.01857439 0.03004447 0.01462570 0.03018673 0.02124071 0.02416121 1
5 0.01944967 0.03419721 0.01367768 0.03423941 0.02329644 0.03688586 1
6 0.01289444 0.02375770 0.01257276 0.02317348 0.01649531 0.01602438 1

R> data("tps100")
R> head(tps100)

id pstate1 pstate2 pstate3 pstate4 pstate5 pstate6
1 1 0.7013881 0.05239271 0 0 0.1408120 0.1054072
2 2 0.7012745 0.05261136 0 0 0.1407625 0.1053516
3 3 0.7011368 0.05270176 0 0 0.1407628 0.1053987
4 4 0.6840325 0.04139266 0 0 0.1700565 0.1045183
5 5 0.6804049 0.04308434 0 0 0.1500344 0.1264764
6 6 0.7011368 0.05270176 0 0 0.1407628 0.1053987

se1 se2 se3 se4 se5 se6 j
1 0.04691168 0.02077138 0 0 0.03457006 0.03081258 1
2 0.04691218 0.02082871 0 0 0.03456448 0.03079617 1
3 0.04693068 0.02086917 0 0 0.03456101 0.03081033 1
4 0.05885230 0.02161973 0 0 0.04710517 0.03673242 1
5 0.06694739 0.02484634 0 0 0.04905043 0.04628088 1
6 0.04693068 0.02086917 0 0 0.03456101 0.03081033 1

3.2. Calibration plots for the transition probabilities out of317

state j = 1 at time s = 0318

We start by producing calibration curves for the predicted transition probabilities out of state319

j = 1 at time s = 0. Given all individuals start in state 1, there is no need to consider the320

transition probabilities out of states j 6= 1 at s = 0. Calibration is assessed at follow up321

time (t = 1826 days). We start by extracting the predicted transition probabilities from state322

j = 1 at time s = 0 from the object tps0. These are the transition probabilities we aim to323

assess the calibration of.324

R> tp.pred.s0 <- tps0 |>
+ dplyr::filter(j == 1) |>
+ dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
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We first evaluate calibration using the BLR-IPCW approach by specifying calib.type =325

"blr". We choose to estimate the calibration curves using restricted cubic splines, although326

the use of loess smoothers would be equally valid. When using restricted cubic splines the327

number of knots must always be specified by the user, and 3 knots are chosen here given the328

reasonably small size of the dataset. Calibration curves could Weights are estimated using329

the internal estimation procedure and the predictor variables year, agecl, proph and match.330

The w.landmark.type argument assigns whether weights are estimated using all individuals331

uncensored at time s, or only those uncensored and in state j at time s, as discussed in section332

2.4. The maximum weight (w.max = 10) and stabilisation of weights (w.stabilised = TRUE)333

are left as default. Weights can also be manually specified using the weights argument. We334

request 95% confidence intervals for the calibration curves calculated through bootstrapping335

with 200 bootstrap replicates.336

R> t.eval <- 1826
R> dat.calib.blr <-
+ calib_msm(data.ms = msebmtcal,
+ data.raw = ebmtcal,
+ j=1,
+ s=0,
+ t = t.eval,
+ tp.pred = tp.pred.s0,
+ calib.type = "blr",
+ curve.type = "rcs",
+ rcs.nk = 3,
+ w.covs = c("year", "agecl", "proph", "match"),
+ CI = 95,
+ CI.R.boot = 200)

The first element of dat.calib.blr (named plotdata) contains 6 data frames. One for the337

calibration curves of the transition probabilities into each of the six states, k ∈ {1, 2, 3, 4, 5, 6}.338

Each data frame contains five columns, id: the identifier of each individual; pred: the339

predicted transition probabilities; obs: the observed event probabilities; obs.lower and340

obs.upper: the confidence interval for the observed event probabilities. The second ele-341

ment (named metadata) is a metadata argument containing information about the data and342

chosen calibration analysis. The plot data and metadata can be viewed using the print and343

metadata commands respectively. However, it is recommended to get acquainted with the344

underlying object structure, as accessing the plot data will be useful if wanting to customise345

plots or apply bootstrapping manually.346

R> print(dat.calib.blr)

$state1
id pred obs obs.lower obs.upper

2 2 0.11401890 0.1095897 0.09090921 0.1287940
4 4 0.13838778 0.1036308 0.08508630 0.1275751
5 5 0.12332255 0.1051035 0.08904819 0.1234944
7 7 0.09737975 0.1236322 0.08986378 0.1606467
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10 10 0.11371889 0.1097779 0.09073130 0.1290061

$state2
id pred obs obs.lower obs.upper

2 2 0.2316569 0.1698031 0.1163660 0.2158913
4 4 0.1836189 0.1855591 0.1550775 0.2178034
5 5 0.1609740 0.1759804 0.1446957 0.2095528
7 7 0.2121470 0.1785688 0.1413952 0.2083255
10 10 0.2315632 0.1698443 0.1164773 0.2158726

$state3
id pred obs obs.lower obs.upper

2 2 0.08442692 0.12485834 0.09431447 0.1596038
4 4 0.07579429 0.11666056 0.08980336 0.1517412
5 5 0.05508100 0.09189341 0.05299086 0.1371077
7 7 0.06154308 0.10011560 0.06577209 0.1392661
10 10 0.08440940 0.12484341 0.09431072 0.1595563

$state4
id pred obs obs.lower obs.upper

2 2 0.2328398 0.2427580 0.2011478 0.2843494
4 4 0.2179331 0.2243106 0.1889370 0.2563107
5 5 0.1828176 0.1851051 0.1547167 0.2138236
7 7 0.2206335 0.2275985 0.1906828 0.2592605
10 10 0.2326989 0.2425807 0.2010257 0.2840853

$state5
id pred obs obs.lower obs.upper

2 2 0.1481977 0.1909795 0.1631746 0.2165364
4 4 0.1538475 0.1654523 0.1488839 0.1834957
5 5 0.1425950 0.2215190 0.1760482 0.2650808
7 7 0.1441960 0.2123460 0.1718196 0.2505304
10 10 0.1488068 0.1879278 0.1611251 0.2130000

$state6
id pred obs obs.lower obs.upper

2 2 0.1888598 0.2069354 0.1837972 0.2328139
4 4 0.2304185 0.2542212 0.2274923 0.2820832
5 5 0.3352099 0.3163102 0.2867808 0.3521109
7 7 0.2641006 0.2800368 0.2576373 0.3044745
10 10 0.1888028 0.2068586 0.1837227 0.2327092

R> metadata(dat.calib.blr)

$valid.transitions
[1] 1 2 3 4 5 6
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$assessed.transitions
[1] 1 2 3 4 5 6

$CI
[1] 95

$CI.type
[1] "bootstrap"

$CI.R.boot
[1] 200

$j
[1] 1

$s
[1] 0

$t
[1] 1826

$calib.type
[1] "blr"

$curve.type
[1] "rcs"

Calibration curves can then be generated using plot. The calibration curves (Figure 2)347

indicate the level of calibration is different for the transition probabilities into each of the348

different states. The calibration into states 4 and 6 looks the best. State 2 has good calibration349

over the majority of the predicted risks but over predicts for individuals with the highest350

predicted risks. Transition probabilities into states 1 and 3 are over and under predicted351

respectively over most of the range of predicted risks. Importantly the calibration of the352

transition probabilities into state 5 (Relapse), a key clinical outcome in this clinical setting,353

is extremely poor. This could be driven by errors in any of the intermediate competing risks354

models out of states 1, 2, 3 and 4, which all contribute to the predicted transition probabilities355

into state 5. Further methodological development is required in order to pin down which of356

the competing risk sub-models may be driving poor calibration in the transition probabilities357

from a multistate model.358

R> plot.blr <- plot(dat.calib.blr, combine = TRUE, nrow = 2, ncol = 3)

Next we use the pseudo-value approach to assess calibration by specifying calib.type =359

"pv". Instead of specifying how the weights are estimated, we now specify variables to define360

groups within which pseudo-values will be calculated (see section 2.5). The goal is to induce361

uninformative censoring within the chosen subgroups. We chose to calculate pseudo-values in362

individuals with the same year of transplant (pv.group.vars = c("year")), and then split363
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R> plot.blr
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Figure 2: BLR-IPCW calibration curves out of state j = 1 at time s = 0.

individuals into a further three groups defined by their predicted risk (pv.n.pctls = 3). The364

number of percentiles should be increased in bigger validation datasets, although guidance365

on specific numbers is currently lacking. Year of transplant was identified as a subgrouping366

variable because a later transplant resulted in a shorter possible follow up, an earlier admin-367

istrative censoring time, and it was therefore highly predictive of being censored. Your data368

should be explored to identify appropriate variables for subgrouping (see vignette-Evaluation-369

of-estimation-of-IPCWs). A parametric confidence interval is estimated as recommended in370

section 2.6.371

R> dat.calib.pv <-
+ calib_msm(data.ms = msebmtcal,
+ data.raw = ebmtcal,
+ j=1,
+ s=0,
+ t = t.eval,
+ tp.pred = tp.pred.s0,
+ calib.type = "pv",
+ curve.type = "rcs",
+ rcs.nk = 3,
+ pv.group.vars = c("year"),
+ pv.n.pctls = 3,
+ CI = 95,
+ CI.type = "parametric")

Calibration curves were then generated using plot. The pseudo-value calibration curves372
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R> plot.pv
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Figure 3: Pseudo-value calibration curves out of state j = 1 at time s = 0.

(Figure 3) are largely similar to the BLR-IPCW calibration curves (Figure 2). The agree-373

ment in the calibration curves from two completely distinct methods provides reassurance374

the assessment of calibration is correct. This is with the exception of state k = 3, where the375

pseudo-value calibration plot indicates the transition probabilities are well calibrated, but the376

BLR-IPCW calibration plot indicates the transition probabilities under predict. In a situa-377

tion like this, we recommend testing the assumptions made by each of the methods to try and378

diagnose which are most likely to hold, and what may be driving the difference, and . In this379

particular example, we hypothesised that the model for estimating the inverse probability of380

censoring weights may be misspecified due to the strong effect of year of transplant on the381

censoring mechanism. We explored this theory in more detail (see vignette-Evaluation-of-382

estimation-of-IPCWs), and concluded that the BLR-IPCW calibration curves may be biased383

in this particular clinical example due to incorrect estimation of the weights.384

R> plot.pv <- plot(dat.calib.pv, combine = TRUE, nrow = 2, ncol = 3)

Next we use the MLR-IPCW to evaluate calibration which produces a calibration scatter plot385

by specifying calib.type = "mlr". The inputs for calculating the weights are the same as386

for the BLR-IPCW approach, but a confidence interval is no longer requested which is not387

possible for the MLR-IPCW approach.388

R> dat.calib.mlr <-
+ calib_msm(data.ms = msebmtcal,
+ data.raw = ebmtcal,
+ j=1,
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R> plot.mlr
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Figure 4: MLR-IPCW calibration scatter plots out of state j = 1 at time s = 0.

+ s=0,
+ t = 1826,
+ tp.pred = tp.pred.s0,
+ calib.type = "mlr",
+ w.covs = c("year", "agecl", "proph", "match"))

The MLR-IPCW calibration scatter plots, produced using plot are contained in Figure 4.389

Within each plot for state k, there is a large amount of variation in calibration of the tran-390

sition probabilities depending on the predicted transition probabilities into states 6= k. One391

valuable insight from these plots is that the variance in the calibration of the transition prob-392

abilities into state 6, is considerably smaller than that of state 4, despite these two states393

both having good calibration according to the BLR-IPCW plots (arguably state 4 looked394

better calibrated). This means the calibration of the transition probabilities into state 6 re-395

mains reasonably consistent, irrespective of the risks of the other states. On the contrary, the396

calibration of the predicted transition probabilities into state 4 is more highly dependent on397

the predicted transition probabilities of the other states. This insight can be gained because398

MLR-IPCW is a stronger (Van Calster et al. 2016) form of calibration assessment than the399

BLR-IPCW and pseudo-value approaches.400

R> plot.mlr <- plot(dat.calib.mlr, combine = TRUE)

3.3. Calibration plots for the transition probabilities out of401

states j = 1 and 3 at time s = 100402
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In the work of de Wreede et al. (2011) focus then shifts to comparing transition probabilities403

when s = 100 depending on whether an individual has had an adverse event (state 3) or404

remains in state 1 (post transplant). Our focus therefore now shifts to assessing the calibration405

of these transition probabilities. This is done through landmarking as described in section 2.406

We start by extracting the predicted transition probabilities from state j = 1 and 3 at time407

s = 100 from the object tps100. These are the transition probabilities we aim to assess the408

calibration of.409

R> tp.pred.j1s100 <- tps100 |>
+ dplyr::filter(j == 1) |>
+ dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
R> tp.pred.j3s100 <- tps100 |>
+ dplyr::filter(j == 3) |>
+ dplyr::select(any_of(paste("pstate", 1:6, sep = "")))

The process for estimating the calibration curves remains the same, changing the inputted410

values j and s, and specifying the appropriate predicted transition probabilities to the ar-411

gument tp.pred. We start by producing the calibration plots for j = 1 and s = 100 using412

the BLR-IPCW (Figure 5) and pseudo-value (Figure 6) methods. Given the small number of413

data points in this analysis induced by landmarking, we do not produce calibration scatter414

plots using MLR-IPCW, which may be misleading given the lack of confidence intervals.415

R> ### Calibration using BLR-IPCW
R> dat.calib.blr.j1.s100 <-
+ calib_msm(data.ms = msebmtcal,
+ data.raw = ebmtcal,
+ j=1,
+ s=100,
+ t = t.eval,
+ tp.pred = tp.pred.j1s100,
+ calib.type = "blr",
+ curve.type = "rcs",
+ rcs.nk = 3,
+ w.covs = c("year", "agecl", "proph", "match"),
+ CI = 95,
+ CI.R.boot = 200)
R> ### Calibration using pseudo-values
R> dat.calib.pv.j1.s100 <-
+ calib_msm(data.ms = msebmtcal,
+ data.raw = ebmtcal,
+ j=1,
+ s=100,
+ t = t.eval,
+ tp.pred = tp.pred.j1s100,
+ calib.type = "pv",
+ curve.type = "rcs",
+ rcs.nk = 3,
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+ pv.group.vars = c("year"),
+ CI = 95,
+ CI.type = "parametric")

There are only four calibration plots because no individuals in state j = 1 at time s = 100416

are in states k = 3 (adverse event) or k = 4 (recovery + adverse event) after t = 1826 days.417

We believe this is due to the definition of an adverse event occuring within 100 days, but418

as secondary users of the data, cannot be sure about this. The calibration of the predicted419

transition probabilities is very poor. Only for state k = 6 is the observed risk a monotonically420

increasing function of the predicted transition probabilities. We follow this up with the421

pseudo-value calibration plots (Figure 6) which leads to similar conclusions, as again only422

state k = 6 has a monotonically increasing calibration curve. The confidence intervals are423

very large. For states k = 2 and k = 5, we cannot rule out that the poor calibration is a424

result of sampling variation as opposed to a poorly performing prediction model. A larger425

validation dataset would be required to get to the bottom of this. There is a major issue426

with the calibration of the transition probabilities of staying in state 1, as the predicted risk427

is inversely proportional to the observed event rate.428

R> plot.blr.j1.s100 <-
+ plot(dat.calib.blr.j1.s100, combine = TRUE, nrow = 2, ncol = 2)

R> plot.pv.j1.s100 <-
+ plot(dat.calib.pv.j1.s100, combine = TRUE, nrow = 2, ncol = 2)

Next we produce calibration plots for j = 3 and s = 100 using the BLR-IPCW (Figure 7)429

and pseudo-value (Figure 8) methods.430

R> ### Calibration using BLR-IPCW
R> dat.calib.blr.j3.s100 <-
+ calib_msm(data.ms = msebmtcal,
+ data.raw = ebmtcal,
+ j=3,
+ s=100,
+ t = t.eval,
+ tp.pred = tp.pred.j3s100,
+ calib.type = "blr",
+ curve.type = "rcs",
+ rcs.nk = 3,
+ w.covs = c("year", "agecl", "proph", "match"),
+ CI = 95,
+ CI.R.boot = 200)
R> ### Calibration using pseudo-values
R> dat.calib.pv.j3.s100 <-
+ calib_msm(data.ms = msebmtcal,
+ data.raw = ebmtcal,
+ j=3,

19



R> plot.blr.j1.s100
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Figure 5: BLR-IPCW calibration curves out of state j = 1 at time s = 100.
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R> plot.pv.j1.s100
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Figure 6: Pseudo-value calibration curves out of state j = 1 at time s = 100.
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+ s=100,
+ t = t.eval,
+ tp.pred = tp.pred.j3s100,
+ calib.type = "pv",
+ curve.type = "rcs",
+ rcs.nk = 3,
+ pv.group.vars = c("year"),
+ CI = 95,
+ CI.type = "parametric")

Again there are only four possible states that an individual may transition into, although431

this includes states 3 (adverse event) and 4 (recovery + adverse event), instead of 1 (post432

transplant) and 2 (recovery). This is because once an individual has entered state 3, they433

cannot move backwards into states 1 or 2. The calibration plots are better than for j = 1. For434

transitions into states k = 3, 4 and 6, the calibration curves are monotonically increasing and435

comparatively close to the line of perfect calibration, although the confidence intervals are436

still quite large. This is true when calibration is assessed using BLR-IPCW or pseudo-values.437

Again the calibration of state 5 is very poor. This makes it difficult to base any clinical438

decisions on the predicted transition probabilities for relapse out of states j = 1 or 3 at time439

s = 100, whereas making clinical decisions based on the risk of death (k = 6) after survival440

for 100 days is more viable, as this was well calibrated for both j = 1 and j = 3. With the441

exception of the transition probabilities from j = 1 into state k = 3 made at time s = 0,442

there has been broad agreement between the calibration curves estimated using the BLR-443

IPCW and pseudo-value approaches. This provides some reassurance about the assessment444

of calibration, and that the assumptions on which each method is based are satisfied.445

R> plot.blr.j3.s100 <-
+ plot(dat.calib.blr.j3.s100, combine = TRUE, nrow = 2, ncol = 2)

R> plot.pv.j3.s100 <-
+ plot(dat.calib.pv.j3.s100, combine = TRUE, nrow = 2, ncol = 2)

4. Discussion
Multistate models are a unique tool for prediction, handling both competing risks and the446

occurence of intermediate health states in the same model. Development of multistate models447

for prediction is becoming more common, yet validation of such models is still very uncommon.448

A major barrier to implementation of statistical techniques is often the availability of software449

(Pullenayegum et al. 2016). calibmsm has been developed to aid in the implementation of450

techniques to assess the calibration of the transition probabilities from a multistate model.451

This paper has extended previously proposed methods for assessing the calibration of the452

transition probabilities out of the initial state (Pate et al. 2024), to the transition probabilities453

out of any state j at any time s. While package development has focused on multistate models,454

calibmsm could, in theory, be used to assess the calibration of predicted risks from a range455
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R> plot.blr.j3.s100
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Figure 7: BLR-IPCW calibration curves out of state j = 3 at time s = 100.
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R> plot.pv.j3.s100
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Figure 8: Pseudo-value calibration curves out of state j = 3 at time s = 100.
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of other models, including: any model which utilises information post baseline to update456

predictions (Bull et al. 2020), dynamic models (van Houwelingen 2007; Grand et al. 2018),457

competing risks models (Putter et al. 2006) and standard single outcome survival models,458

where predictions can be made at any landmark time.459

All three methods (BLR-IPCW, MLR-IPCW and pseudo-value) have been shown to give460

an unbiased assessment of calibration under non-informative censoring mechanisms, and a461

predominately unbiased assessment of calibration under strongly informative censoring (Pate462

et al. 2024). This paper found broadly similar evaluation of calibration when using the463

BLR-IPCW and pseudo-value methods, however there were discrepancies in the evaluation464

of calibration of the transition probabilities into state k = 3. In situations like this, we465

recommend testing the assumptions of each method as was done in vignette-Evaluation-466

of-estimation-of-IPCWs. While we concluded that the BLR-IPCW was likely to be biased467

in this particular example, this is not a general finding. Further research evaluating each468

methods performance in a wider range of simulation scenarios, and by a different research469

group (Boulesteix et al. 2013), would be highly valuable (Heinze et al. 2022).470

Given it is possible to use calibmsm to validate a standard competing risks model (Austin471

et al. 2022; Gerds et al. 2014), we carried out a sensitivity analysis to compare the approaches472

described in this paper with the ’graphical calibration curves’ of Austin et al. (2022), vignette-473

Comparison-with-graphical-calibration-curves-in-competing-risks-setting. BLR-IPCW, pseudo-474

values, and graphical calibration curves (MLR-IPCW excluded for not producing a calibration475

curve) all resulted in similar calibration curves. This is with the exception of BLR-IPCW476

for state k = 3, which has been previously discussed. The three methods take completely477

different approaches to assessing the calibration of a competing risks model. Therefore finding478

agreement between these assessments of calibration can provide reassurance that the calibra-479

tion plots are correct, and is an exercise that could be repeated in practice. Despite this,480

the relative performance of each method in a wider range of competing risks scenarios re-481

mains unknown. A comparison of these methods in a simulation when the assumptions of482

each method do and do not hold, and under a range of sample sizes and multistate model483

structures, would be therefore valuable (Heinze et al. 2022).484

The BLR-IPCW, MLR-IPCW and pseudo-value approaches have different computational485

burdens. A calibration curve can be obtained reasonably quickly using the BLR-IPCW or486

MLR-IPCW approaches, however estimation of confidence intervals for BLR-IPCW using487

bootstrapping (the recommend method in section 2.6) will result in a high computational488

time in large validation datasets. On the contrary, obtaining the calibration curve itself489

using the pseudo-value approach has a high computational burden due to estimation of the490

pseudo-values. Once these have been calculated, a calibration curve and confidence interval491

can be estimated quickly using parametric techniques, meaning estimation of the confidence492

interval adds minimal computational burden. We plan to extend the package to allow users493

to estimate the pseudo-values for each individual seperately before estimating the calibration494

curve. This will allow the first part of the process to be parallelised and will make estimation495

of calibration curves using the pseudo-value approach more feasible in large datasets.496

Estimation of the weights is clearly of high importance for the BLR-IPCW and MLR-IPCW497

approaches. If the model to do so is misspecified, this could lead to incorrect evaluation of498

the calibration. It is possible this is what is causing the difference between the BLR-IPCW499

and pseudo-value approaches for the calibration of transition probabilities from state j = 1 at500

time s = 0 into state k = 3, as was explored in vignette-Evaluation-of-estimation-of-IPCWs.501

25

https://alexpate30.github.io/calibmsm/articles/Evaluation-of-estimation-of-IPCWs.html
https://alexpate30.github.io/calibmsm/articles/Evaluation-of-estimation-of-IPCWs.html
https://alexpate30.github.io/calibmsm/articles/Evaluation-of-estimation-of-IPCWs.html
https://alexpate30.github.io/calibmsm/articles/Comparison-with-graphical-calibration-curves-in-competing-risks-setting.html
https://alexpate30.github.io/calibmsm/articles/Comparison-with-graphical-calibration-curves-in-competing-risks-setting.html
https://alexpate30.github.io/calibmsm/articles/Comparison-with-graphical-calibration-curves-in-competing-risks-setting.html
https://alexpate30.github.io/calibmsm/articles/Evaluation-of-estimation-of-IPCWs.html


This package is focused on creation of calibration curves, but is not a dedicated package502

for estimating inverse probability of censoring weights. We encourage users to create a well503

specified model for the weights (see Hernan and Robins (2020)) if using the BLR-IPCW504

or MLR-IPCW approaches. Custom functions for estimating the weights can be specified505

through the w.function in calib_msm. Alternatively, weights can be estimated externally and506

then specified though the weights argument. In this latter case, the internal bootstrapping507

procedure will not work, as the weights need to be re-estimated in each bootstrap dataset.508

We have provided a more detailed vignette about how to estimate calibration curves and509

confidence intervals using bootstrapping when defining your own function to estimate the510

weights (vignette-BLR-IPCW-manual-bootstrap).511

In summary, calibmsm provides tools to assess the calibration of the transition probabilities512

of a multistate model or competing risks model using three approaches (BLR-IPCW, MLR-513

IPCW and pseudo-values). Further comparison of these approaches in targeted simulations514

to establish their performance under different censoring mechanisms and assumptions would515

be valuable. Future work will aim to develop methodology for other model evaluation metrics516

and incorporate these into calibmsm.517

Computational details
The results in this paper were obtained using R 4.4.0 with the dplyr 1.1.4, tidyr 1.3.1, gg-518

plot2 3.5.1, ggpubr 0.6.0, Hmisc 5.1.3, rms 6.8.1, VGAM 1.1.11, boot 1.3.30, survival 3.5.8,519

stats 4.4.0, magrittr 2.0.3. R itself and all packages used are available from the Comprehensive520

R Archive Network (CRAN) at https://CRAN.R-project.org/.521
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