
Package: rcprd (via r-universe)
November 15, 2024

Title Extraction and Management of Clinical Practice Research Datalink
Data

Version 0.0.1

Description Simplify the process of extracting and processing Clinical
Practice Research Datalink (CPRD) data in order to build
datasets ready for statistical analysis. This process is
difficult in 'R', as the raw data is very large and cannot be
read into the R workspace. 'rcprd' utilises 'RSQLite' to create
'SQLite' databases which are stored on the hard disk. These are
then queried to extract the required information for a cohort
of interest, and create datasets ready for statistical
analysis. The processes follow closely that from the 'rEHR'
package, see Springate et al., (2017)
<doi:10.1371/journal.pone.0171784>.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Depends data.table

Imports dplyr, fastmatch, RSQLite, stringr

Config/testthat/edition 3

URL https://alexpate30.github.io/rcprd/

Config/pak/sysreqs libicu-dev

Repository https://alexpate30.r-universe.dev

RemoteUrl https://github.com/alexpate30/rcprd

RemoteRef HEAD

RemoteSha d60e2c38f3c8bfe4f196db31ec80f129d5d692c0

1

https://doi.org/10.1371/journal.pone.0171784
https://alexpate30.github.io/rcprd/

2 add_to_database

Contents

add_to_database . 2
combine_query . 4
combine_query.aurum . 6
combine_query_boolean . 8
combine_query_boolean.aurum . 9
connect_database . 10
cprd_extract . 11
create_directory_system . 13
db_query . 14
delete_directory_system . 15
extract_bmi . 16
extract_cholhdl_ratio . 19
extract_cohort . 22
extract_diabetes . 22
extract_ho . 25
extract_smoking . 27
extract_test_data . 30
extract_test_data_var . 33
extract_test_recent . 35
extract_time_until . 37
extract_txt_char . 40
extract_txt_cons . 40
extract_txt_death . 41
extract_txt_drug . 41
extract_txt_hes_primary . 42
extract_txt_linkage . 42
extract_txt_obs . 43
extract_txt_pat . 43
extract_txt_prob . 44
extract_txt_ref . 44
implement_output . 45

Index 46

add_to_database Adds a single .txt file to an SQLite database on the hard disk.

Description

Add the raw data from one of the CPRD flatfiles to an SQLite database.

add_to_database 3

Usage

add_to_database(
filepath,
filetype = c("observation", "drugissue", "referral", "problem", "consultation",

"hes_primary", "death"),
nrows = -1,
select = NULL,
subset_patids = NULL,
use_set = FALSE,
db,
extract_txt_func = NULL,
tablename = NULL,
...

)

Arguments

filepath Path to .txt file on your system.

filetype Type of CPRD Aurum file (observation, drugissue, referral, problem, consulta-
tion, hes_primary, death)

nrows Number of rows to read in from .txt file.

select Character vector of column names to select before adding to the SQLite database.

subset_patids Patient id’s to subset the .txt file on before adding to the SQLite database.

use_set Reduce subset_patids to just those with a corresponding set value to the .txt file
being read in. Can greatly improve computational efficiency when subset_patids
is large. See vignette XXXX for more details.

db An open SQLite database connection created using RSQLite::dbConnect.
extract_txt_func

User-defined function to read the .txt file into R.

tablename Name of table in SQLite database that the data will be added to.

... Extract arguments passed to read.table (or extract_txt_func) when reading in .txt
files.

Details

Will add the file to a table named filetype in the SQLite database, unless tablename is specified.

If use_set = FALSE, then subset_patids should be a vector of patid’s that the .txt files will be sub-
setted on before adding to the SQLite database. If use_set = TRUE, then subset_patids should
be a dataframe with two columns, patid and set, where set corresponds to the number in the file
name following the word ’set’. This functionality is provided to increase computational efficiency
when subsetting to a cohort of patients which is very large (millions). This can be a computationally
expensive process as each flatfile being read in, must be cross matched with a large vector . The
CPRD flatfiles are split up into groups which can be identified from their naming convention. Pa-
tients from set 1, will have their data in DrugIssue, Observation, etc, all with the same "set" suffix in
the flatfile name. We can utilise this to speed up the process of subsetting the data from the flatfiles

4 combine_query

to only those with patids in subset.patid. Instead we subset to those with patids in subset_patids, and
with the corresponding value of "set", which matches the suffix "set" in the CPRD flatfile filename.
For example, patients in the Patient file which had suffix "set1", will have their medical data in the
Observation file with suffix "set1". When subsetting the Observation file to those in subset_patids
(our cohort), we only need to do so for patients who were also in the patient file with suffix "set1".
If the cohort of patients for which you want to subset the data to is very small, the computational
gains from this argument are minor and it can be ignored.

The function for reading in the .txt file will be chosen from a set of functions provided with rcprd,
based on the fletype (filetype). extract_txt_func does not need to be specified unless wanting
to manually define the function for doing this. This may be beneficial if wanting to change variable
formats, or if the variables in the .txt files change in future releases of CPRD AURUM.

Value

Adds .txt file to SQLite database on hard disk.

Examples

Create connection to a temporary database
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Add observation data
add_to_database(filepath = system.file("aurum_data",
"aurum_allpatid_set1_extract_observation_001.txt", package = "rcprd"),
filetype = "observation", db = aurum_extract, overwrite = TRUE)

Query database
RSQLite::dbGetQuery(aurum_extract, 'SELECT * FROM observation', n = 3)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

combine_query Combine a database query with a cohort.

Description

An S3 generic function that can be used on database queries from Aurum or GOLD extracts. Com-
bine a database query with a cohort, only retaining observations between time_prev days prior to
indexdt, and time_post days after indexdt, and for test data with values between lower_bound
and upper_bound. The most recent numobs observations will be returned. cohort must contain
variables patid and indexdt. The type of query must be specified for appropriate data manipula-
tion. Input type = med if interested in medical diagnoses from the observation file, and type = test
if interseted in test data from the observation file.

combine_query 5

Usage

combine_query(
db_query,
cohort,
query_type = c("med", "drug", "test", "hes_primary", "death"),
time_prev = Inf,
time_post = Inf,
lower_bound = -Inf,
upper_bound = Inf,
numobs = 1,
value_na_rm = TRUE,
earliest_values = FALSE,
reduce_output = TRUE

)

Arguments

db_query Output from database query (ideally obtained through db_query).

cohort Cohort to combine with the database query.

query_type Type of query

time_prev Number of days prior to index date to look for codes.

time_post Number of days after index date to look for codes.

lower_bound Lower bound for returned values when query_type = "test".

upper_bound Upper bound for returned values when query_type = "test".

numobs Number of observations to be returned.

value_na_rm If TRUE will remove data with NA in the value column of the queried data and
remove values outside of lower_bound and upper_bound when query_type =
"test".

earliest_values

If TRUE will return the earliest values as opposed to most recent.

reduce_output If TRUE will reduce output to just patid, event date, medical/product code, and
test value.

Details

value_na_rm = FALSE may be of use when extracting variables like smoking status, where we want
test data for number of cigarettes per day, but do not want to remove all observations with NA in
the value column, because the medcodeid itself may indicate smoking status.

Value

A data.table with observations that meet specified criteria.

6 combine_query.aurum

Examples

Create connection to a temporary database
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Add observation data from all observation files in specified directory
cprd_extract(db = aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation")

Query database for a specific medcode
db_query <- db_query(db_open = aurum_extract,
tab ="observation",
codelist_vector = "187341000000114")

Define cohort
pat<-extract_cohort(filepath = system.file("aurum_data", package = "rcprd"))

Add an index date to pat
pat$indexdt <- as.Date("01/01/2020", format = "%d/%m/%Y")

Combine query with cohort retaining most recent three records
combine_query(cohort = pat,
db_query = db_query,
query_type = "med",
numobs = 3)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

combine_query.aurum Combine a CPRD aurum database query with a cohort.

Description

An S3 method that can be used on database queries from Aurum extracts. Combine a database
query with a cohort, only retaining observations between time_prev days prior to indexdt, and
time_post days after indexdt, and for test data with values between lower_bound and upper_bound.
The most recent numobs observations will be returned. cohort must contain variables patid and
indexdt. The type of query must be specified for appropriate data manipulation. Input type = med
if interested in medical diagnoses from the observation file, and type = test if interseted in test
data from the observation file.

Usage

S3 method for class 'aurum'
combine_query(
db_query,

combine_query.aurum 7

cohort,
query_type,
time_prev = Inf,
time_post = Inf,
lower_bound = -Inf,
upper_bound = Inf,
numobs = 1,
value_na_rm = TRUE,
earliest_values = FALSE,
reduce_output = TRUE

)

Arguments

db_query Output from database query (ideally obtained through db_query).

cohort Cohort to combine with the database query.

query_type Type of query

time_prev Number of days prior to index date to look for codes.

time_post Number of days after index date to look for codes.

lower_bound Lower bound for returned values when query_type = "test".

upper_bound Upper bound for returned values when query_type = "test".

numobs Number of observations to be returned.

value_na_rm If TRUE will remove data with NA in the value column of the queried data and
remove values outside of lower_bound and upper_bound when query_type =
"test".

earliest_values

If TRUE will return the earliest values as opposed to most recent.

reduce_output If TRUE will reduce output to just patid, event date, medical/product code, and
test value.

Details

value_na_rm = FALSE may be of use when extracting variables like smoking status, where we want
test data for number of cigarettes per day, but do not want to remove all observations with NA in
the value column, because the medcodeid itself may indicate smoking status.

Value

A data.table with observations that meet specified criteria.

Examples

Create connection to a temporary database
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Add observation data from all observation files in specified directory
cprd_extract(db = aurum_extract,

8 combine_query_boolean

filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation")

Query database for a specific medcode
db_query <- db_query(db_open = aurum_extract,
tab ="observation",
codelist_vector = "187341000000114")

Define cohort
pat<-extract_cohort(filepath = system.file("aurum_data", package = "rcprd"))

Add an index date to pat
pat$indexdt <- as.Date("01/01/2020", format = "%d/%m/%Y")

Combine query with cohort retaining most recent three records
combine_query(cohort = pat,
db_query = db_query,
query_type = "med",
numobs = 3)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

combine_query_boolean Combine a database query with a cohort returning a 0/1 vector de-
pending on whether each individual has a recorded code of interest.

Description

An S3 generic function that can be used on database queries from Aurum or GOLD extracts. Com-
bine a database query with a cohort returning a 0/1 vector depending on whether each individual
has a recorded code of interest. cohort must contain variables patid and indexdt. The database
query will be merged with the cohort by variable patid. If an individual has at least numobs obser-
vations between time_prev days prior to indexdt, and time_post days after indexdt, a 1 will be
returned, 0 otherwise. The type of query must be specified for appropriate data manipulation.

Usage

combine_query_boolean(
db_query,
cohort,
query_type = c("med", "drug"),
time_prev = Inf,
time_post = 0,
numobs = 1

)

combine_query_boolean.aurum 9

Arguments

db_query Output from database query (ideally obtained through db_query).

cohort Cohort to combine with the database query.

query_type Type of query

time_prev Number of days prior to index date to look for codes.

time_post Number of days after index date to look for codes.

numobs Number of observations required to be observed in specified time window to
return a 1.

Value

A 0/1 vector.

combine_query_boolean.aurum

Combine a CPRD aurum database query with a cohort returning a 0/1
vector depending on whether each individual has a recorded code of
interest.

Description

An S3 method that can be used on database queries from Aurum extracts. Combine a database
query with a cohort returning a 0/1 vector depending on whether each individual has a recorded
code of interest. cohort must contain variables patid and indexdt. The database query will be
merged with the cohort by variable patid. If an individual has at least numobs observations between
time_prev days prior to indexdt, and time_post days after indexdt, a 1 will be returned, 0
otherwise. The type of query must be specified for appropriate data manipulation.

Usage

S3 method for class 'aurum'
combine_query_boolean(
db_query,
cohort,
query_type,
time_prev = Inf,
time_post = 0,
numobs = 1

)

Arguments

db_query Output from database query (ideally obtained through db_query).

cohort Cohort to combine with the database query.

query_type Type of query

10 connect_database

time_prev Number of days prior to index date to look for codes.

time_post Number of days after index date to look for codes.

numobs Number of observations required to be observed in specified time window to
return a 1.

Value

A 0/1 vector.

Examples

Create connection to a temporary database
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Add observation data from all observation files in specified directory
cprd_extract(db = aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation")

Query database for a specific medcode
db_query <- db_query(db_open = aurum_extract,
tab ="observation",
codelist_vector = "187341000000114")

Define cohort
pat<-extract_cohort(filepath = system.file("aurum_data", package = "rcprd"))

Add an index date to pat
pat$indexdt <- as.Date("01/01/2020", format = "%d/%m/%Y")

Combine query with cohort retaining most recent three records
combine_query_boolean(cohort = pat,
db_query = db_query,
query_type = "med",
numobs = 3)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

connect_database Open connection to SQLite database

Description

Open connection to SQLite database

cprd_extract 11

Usage

connect_database(dbname)

Arguments

dbname Name of SQLite database on hard disk (including full file path relative to work-
ing directory)

Value

No return value, called to open a database connection.

Examples

Connect to a database
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Check connection is open
inherits(aurum_extract, "DBIConnection")

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

cprd_extract Adds all the .txt files in a directory, with certain file names, to an
SQLite database on the hard disk.

Description

Add the raw data from more than one of the CPRD flatfiles to an SQLite database.

Usage

cprd_extract(
db,
filepath,
filetype = c("observation", "drugissue", "referral", "problem", "consultation",

"hes_primary", "death"),
nrows = -1,
select = NULL,
subset_patids = NULL,
use_set = FALSE,
extract_txt_func = NULL,
str_match = NULL,
tablename = NULL

)

12 cprd_extract

Arguments

db An open SQLite database connection created using RSQLite::dbConnect.

filepath Path to directory containing .txt files.

filetype Type of CPRD Aurum file (observation, drugissue, referral, problem, consulta-
tion, hes_primary, death)

nrows Number of rows to read in from .txt file.

select Vector of column names to select before adding to the SQLite database.

subset_patids Patient id’s to subset the .txt file on before adding to the SQLite database.

use_set Reduce subset_patids to just those with a corresponding set value to the .txt file
being read in. Can greatly improve computational efficiency when subset_patids
is large. See vignette XXXX for more details.

extract_txt_func

User-defined function to read the .txt file into R.

str_match Character vector to match on when searching for file names to add to the database.

tablename Name of table in SQLite database that the data will be added to.

Details

By default, will add files that contain filetype in the file name to a table named filetype in
the SQLite database. If str_match is specified, will add files that contain str_match in the file
name to a table named str_match in the SQLite database. In this case, filetype will still be
used to choose which function reads in and formats the raw data, although this can be overwritten
with extract_txt_func. If argument tablename is specified, data will be added to a table called
tablename in the SQLite database.

Currently, rcprd only deals with filetype = c("observation", "drugissue", "referral", "problem",
"consultation", "hes_primary", "death") by default. However, by using str_match and extract_txt_func,
the user can manually search for files with any string in the file name, and read them in and format
using a user-defined function. This means the user is not restricted to only adding the pre-defined
file types to the SQLite database.

If use_set = FALSE, then subset_patids should be a vector of patid’s that the .txt files will be sub-
setted on before adding to the SQLite database. If use_set = TRUE, then subset_patids should
be a dataframe with two columns, patid and set, where set corresponds to the number in the file
name following the word ’set’. This functionality is provided to increase computational efficiency
when subsetting to a cohort of patients which is very large (millions). This can be a computationally
expensive process as each flatfile being read in, must be cross matched with a large vector . The
CPRD flatfiles are split up into groups which can be identified from their naming convention. Pa-
tients from set 1, will have their data in DrugIssue, Observation, etc, all with the same "set" suffix in
the flatfile name. We can utilise this to speed up the process of subsetting the data from the flatfiles
to only those with patids in subset.patid. Instead we subset to those with patids in subset_patids, and
with the corresponding value of "set", which matches the suffix "set" in the CPRD flatfile file name.
For example, patients in the Patient file which had suffix "set1", will have their medical data in the
Observation file with suffix "set1". When subsetting the Observation file to those in subset_patids
(our cohort), we only need to do so for patients who were also in the patient file with suffix "set1".
If the cohort of patients for which you want to subset the data to is very small, the computational
gains from this argument are minor and it can be ignored.

create_directory_system 13

The function for reading in the .txt file will be chosen from a set of functions provided with rcprd,
based on the filetype (filetype). extract_txt_func does not need to be specified unless wanting
to manually define the function for doing this. This may be beneficial if wanting to change variable
formats, or if the variables in the .txt files change in future releases of CPRD AURUM and rcprd
has not been updated.

Value

Adds .txt file to SQLite database on hard disk.

Examples

Create connection to a temporary database
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Add observation data from all observation files in specified directory
cprd_extract(db = aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation")

Query database
RSQLite::dbGetQuery(aurum_extract, 'SELECT * FROM observation', n = 3)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

create_directory_system

Create the appropriate directory system to be able to run functions
without specifying hard filepaths

Description

Create the appropriate directory system to be able to run functions without specifying hard filepaths

Usage

create_directory_system(rootdir = NULL)

Arguments

rootdir Directory within which to create the directory system

Value

No return value, creates directory system in the specified directory.

14 db_query

Examples

Create directory system compatible with rcprd's automatic saving of output
create_directory_system(tempdir())
file.exists(file.path(tempdir(),"data"))
file.exists(file.path(tempdir(),"code"))
file.exists(file.path(tempdir(),"codelists"))

Return filespace to how it was prior to example
delete_directory_system(tempdir())

db_query Query an RSQLite database.

Description

Query an RSQLite database stored on the hard disk for observations with specific codes.

Usage

db_query(
codelist,
db_open = NULL,
db = NULL,
db_filepath = NULL,
db_cprd = c("aurum", "gold"),
tab = c("observation", "drugissue", "clinical", "immunisation", "test", "therapy",

"hes_primary", "death"),
codelist_vector = NULL

)

Arguments

codelist Name of codelist to query the database with.

db_open An open SQLite database connection created using RSQLite::dbConnect, to be
queried.

db Name of SQLITE database on hard disk, to be queried.

db_filepath Full filepath to SQLITE database on hard disk, to be queried.

db_cprd CPRD Aurum (’aurum’) or gold (’gold’).

tab Name of table in SQLite database that is to be queried.
codelist_vector

Vector of codes to query the database with. This takes precedent over codelist
if both are specified.

delete_directory_system 15

Details

Specifying db requires a specific underlying directory structure. The SQLite database must be
stored in "data/sql/" relative to the working directory. If the SQLite database is accessed through
db, the connection will be opened and then closed after the query is complete. The same is true
if the database is accessed through db_filepath. A connection to the SQLite database can also
be opened manually using RSQLite::dbConnect, and then using the object as input to parameter
db_open. After wards, the connection must be closed manually using RSQLite::dbDisconnect. If
db_open is specified, this will take precedence over db or db_filepath.

Specifying codelist requires a specific underlying directory structure. The codelist on the hard
disk must be stored in "codelists/analysis/" relative to the working directory, must be a .csv file,
and contain a column "medcodeid", "prodcodeid" or "ICD10" depending on the chosen tab. The
codelist can also be read in manually, and supplied as a character vector to codelist_vector. If
codelist_vector is defined, this will take precedence over codelist.

Value

A data.table with observations contained in the specified codelist.

Examples

Create connection to a temporary database
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Add observation data from all observation files in specified directory
cprd_extract(db = aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation")

Query database for a specific medcode
db_query(db_open = aurum_extract,
tab ="observation",
codelist_vector = "187341000000114")

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

delete_directory_system

Deletes directory system created by delete_directory_system

Description

Deletes directory system created by delete_directory_system. Primarily used to restore filespaces
to original in examples/tests/vignettes.

16 extract_bmi

Usage

delete_directory_system(rootdir = NULL)

Arguments

rootdir Directory within which to delete the directory system

Value

No return value, deletes directory system in the specified directory.

Examples

Print current working directory
getwd()

Create directory system
create_directory_system(tempdir())
file.exists(file.path(tempdir(),"data"))
file.exists(file.path(tempdir(),"code"))
file.exists(file.path(tempdir(),"codelists"))

Return filespace to how it was prior to example
delete_directory_system(tempdir())
file.exists(file.path(tempdir(),"data"))
file.exists(file.path(tempdir(),"code"))
file.exists(file.path(tempdir(),"codelists"))

extract_bmi Extract most recent BMI score relative to an index date.

Description

Extract most recent BMI score relative to an index date.

Usage

extract_bmi(
cohort,
varname = NULL,
codelist_bmi = NULL,
codelist_weight = NULL,
codelist_height = NULL,
codelist_bmi_vector = NULL,
codelist_weight_vector = NULL,
codelist_height_vector = NULL,
indexdt,

extract_bmi 17

t = NULL,
t_varname = TRUE,
time_prev = 365.25 * 5,
time_post = 0,
lower_bound = -Inf,
upper_bound = Inf,
db_open = NULL,
db = NULL,
db_filepath = NULL,
out_save_disk = FALSE,
out_subdir = NULL,
out_filepath = NULL,
return_output = TRUE

)

Arguments

cohort Cohort to extract age for.

varname Optional name for variable in output dataset.

codelist_bmi Name of codelist (stored on hard disk in "codelists/analysis/") for BMI to query
the database with.

codelist_weight

Name of codelist (stored on hard disk in "codelists/analysis/") for weight to
query the database with.

codelist_height

Name of codelist (stored on hard disk in "codelists/analysis/") for height to query
the database with.

codelist_bmi_vector

Vector of codes for BMI to query the database with.
codelist_weight_vector

Vector of codes for weight to query the database with.
codelist_height_vector

Vector of codes for height to query the database with.

indexdt Name of variable which defines index date in cohort.

t Number of days after index date at which to calculate variable.

t_varname Whether to add t to varname.

time_prev Number of days prior to index date to look for codes.

time_post Number of days after index date to look for codes.

lower_bound Lower bound for returned values.

upper_bound Upper bound for returned values.

db_open An open SQLite database connection created using RSQLite::dbConnect, to be
queried.

db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.

db_filepath Full filepath to SQLITE database on hard disk, to be queried.

18 extract_bmi

out_save_disk If TRUE will attempt to save outputted data frame to directory "data/extraction/".

out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.

out_filepath Full filepath and filename to save outputted data frame into.

return_output If TRUE will return outputted data frame into R workspace.

Details

BMI can either be identified through a directly recorded BMI score, or calculated via height and
weight scores. Full details on the algorithm for extracting BMI are given in the vignette: Details-on-
algorithms-for-extracting-specific-variables. This vignette can be viewed by running vignette("help",
package = "rcprd").

Specifying db requires a specific underlying directory structure. The SQLite database must be
stored in "data/sql/" relative to the working directory. If the SQLite database is accessed through
db, the connection will be opened and then closed after the query is complete. The same is true
if the database is accessed through db_filepath. A connection to the SQLite database can also
be opened manually using RSQLite::dbConnect, and then using the object as input to parameter
db_open. After wards, the connection must be closed manually using RSQLite::dbDisconnect. If
db_open is specified, this will take precedence over db or db_filepath.

If out_save_disk = TRUE, the data frame will automatically be written to an .rds file in a subdirec-
tory "data/extraction/" of the working directory. This directory structure must be created in advance.
out_subdir can be used to specify subdirectories within "data/extraction/". These options will use
a default naming convetion. This can be overwritten using out_filepath to manually specify the
location on the hard disk to save. Alternatively, return the data frame into the R workspace using
return_output = TRUE and then save onto the hard disk manually.

Specifying the non-vector type codelists requires a specific underlying directory structure. The
codelist on the hard disk must be stored in "codelists/analysis/" relative to the working directory,
must be a .csv file, and contain a column "medcodeid", "prodcodeid" or "ICD10" depending on the
chosen tab. The input to these variables should just be the name of the files (excluding the suffix
.csv). The codelists can also be read in manually, and supplied as a character vector. This option
will take precedence over the codelists stored on the hard disk if both are specified.

Value

A data frame with variable BMI.

Examples

Connect
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Create SQLite database using cprd_extract
cprd_extract(aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation", use_set = FALSE)

Define cohort and add index date
pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")

extract_cholhdl_ratio 19

Extract most recent BMI prior to index date
extract_bmi(cohort = pat,
codelist_bmi_vector = "498521000006119",
codelist_weight_vector = "401539014",
codelist_height_vector = "13483031000006114",
indexdt = "indexdt",
time_prev = Inf,
db_open = aurum_extract,
return_output = TRUE)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

extract_cholhdl_ratio Extract most recent total cholesterol/high-density lipoprotein ratio
score relative to an index date.

Description

Extract most recent total cholesterol/high-density lipoprotein ratio score relative to an index date.

Usage

extract_cholhdl_ratio(
cohort,
varname = NULL,
codelist_ratio = NULL,
codelist_chol = NULL,
codelist_hdl = NULL,
codelist_ratio_vector = NULL,
codelist_chol_vector = NULL,
codelist_hdl_vector = NULL,
indexdt,
t = NULL,
t_varname = TRUE,
time_prev = 365.25 * 5,
time_post = 0,
lower_bound = -Inf,
upper_bound = Inf,
db_open = NULL,
db = NULL,
db_filepath = NULL,
out_save_disk = FALSE,
out_subdir = NULL,
out_filepath = NULL,
return_output = TRUE

)

20 extract_cholhdl_ratio

Arguments

cohort Cohort to extract age for.

varname Optional name for variable in output dataset.

codelist_ratio Name of codelist (stored on hard disk in "codelists/analysis/") for ratio to query
the database with.

codelist_chol Name of codelist (stored on hard disk in "codelists/analysis/") for total choles-
terol to query the database with.

codelist_hdl Name of codelist (stored on hard disk in "codelists/analysis/") for high-density
lipoprotein to query the database with.

codelist_ratio_vector

Vector of codes for ratio to query the database with.
codelist_chol_vector

Vector of codes for total cholesterol to query the database with.
codelist_hdl_vector

Vector of codes for high-density lipoprotein to query the database with.

indexdt Name of variable which defines index date in cohort.

t Number of days after index date at which to calculate variable.

t_varname Whether to add t to varname.

time_prev Number of days prior to index date to look for codes.

time_post Number of days after index date to look for codes.

lower_bound Lower bound for returned values.

upper_bound Upper bound for returned values.

db_open An open SQLite database connection created using RSQLite::dbConnect, to be
queried.

db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.

db_filepath Full filepath to SQLITE database on hard disk, to be queried.

out_save_disk If TRUE will attempt to save outputted data frame to directory "data/extraction/".

out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.

out_filepath Full filepath and filename to save outputted data frame into.

return_output If TRUE will return outputted data frame into R workspace.

Details

Cholesterol/HDL ratio can either be identified through a directly recorded cholesterol/hdl ratio
score, or calculated via total cholesterol and HDL scores. Full details on the algorithm for extract-
ing cholesterol/hdl ratio are given in the vignette: Details-on-algorithms-for-extracting-specific-
variables. This vignette can be viewed by running vignette("help", package = "rcprd").

Specifying db requires a specific underlying directory structure. The SQLite database must be
stored in "data/sql/" relative to the working directory. If the SQLite database is accessed through
db, the connection will be opened and then closed after the query is complete. The same is true
if the database is accessed through db_filepath. A connection to the SQLite database can also
be opened manually using RSQLite::dbConnect, and then using the object as input to parameter

extract_cholhdl_ratio 21

db_open. After wards, the connection must be closed manually using RSQLite::dbDisconnect. If
db_open is specified, this will take precedence over db or db_filepath.

If out_save_disk = TRUE, the data frame will automatically be written to an .rds file in a subdirec-
tory "data/extraction/" of the working directory. This directory structure must be created in advance.
out_subdir can be used to specify subdirectories within "data/extraction/". These options will use
a default naming convetion. This can be overwritten using out_filepath to manually specify the
location on the hard disk to save. Alternatively, return the data frame into the R workspace using
return_output = TRUE and then save onto the hard disk manually.

Specifying the non-vector type codelists requires a specific underlying directory structure. The
codelist on the hard disk must be stored in "codelists/analysis/" relative to the working directory,
must be a .csv file, and contain a column "medcodeid", "prodcodeid" or "ICD10" depending on the
chosen tab. The input to these variables should just be the name of the files (excluding the suffix
.csv). The codelists can also be read in manually, and supplied as a character vector. This option
will take precedence over the codelists stored on the hard disk if both are specified.

Value

A data frame with variable total cholesterol/high-density lipoprotein ratio.

Examples

Connect
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Create SQLite database using cprd_extract
cprd_extract(aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation", use_set = FALSE)

Define cohort and add index date
pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")

Extract most recent cholhdl_ratio prior to index date
extract_cholhdl_ratio(cohort = pat,
codelist_ratio_vector = "498521000006119",
codelist_chol_vector = "401539014",
codelist_hdl_vector = "13483031000006114",
indexdt = "indexdt",
time_prev = Inf,
db_open = aurum_extract,
return_output = TRUE)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

22 extract_diabetes

extract_cohort Create cohort from patient files

Description

Create cohort from patient files

Usage

extract_cohort(filepath, patids = NULL, select = NULL, set = FALSE)

Arguments

filepath Path to directory containing .txt files.

patids Patids of patients to retain in the cohort. Character vector. Numeric values
should not be used.

select Character vector of column names to select.

set If TRUE will create a variable called set which will contain the number that
comes after the word ’set’ in the file name.

Value

Data frame with patient information

Examples

Extract cohort data
pat<-extract_cohort(filepath = system.file("aurum_data", package = "rcprd"))
pat

extract_diabetes Extract diabetes status prior to an index date.

Description

Extract diabetes status prior to an index date.

extract_diabetes 23

Usage

extract_diabetes(
cohort,
varname = NULL,
codelist_type1 = NULL,
codelist_type2 = NULL,
codelist_type1_vector = NULL,
codelist_type2_vector = NULL,
indexdt,
t = NULL,
t_varname = TRUE,
db_open = NULL,
db = NULL,
db_filepath = NULL,
out_save_disk = FALSE,
out_subdir = NULL,
out_filepath = NULL,
return_output = TRUE

)

Arguments

cohort Cohort to extract age for.

varname Optional name for variable in output dataset.

codelist_type1 Name of codelist (stored on hard disk in "codelists/analysis/") for type 1 diabetes
to query the database with.

codelist_type2 Name of codelist (stored on hard disk in "codelists/analysis/") for type 2 diabetes
to query the database with.

codelist_type1_vector

Vector of codes for type 1 diabetes to query the database with.
codelist_type2_vector

Vector of codes for type 2 diabetes to query the database with.

indexdt Name of variable which defines index date in cohort.

t Number of days after index date at which to calculate variable.

t_varname Whether to add t to varname.

db_open An open SQLite database connection created using RSQLite::dbConnect, to be
queried.

db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.

db_filepath Full filepath to SQLITE database on hard disk, to be queried.

out_save_disk If TRUE will attempt to save outputted data frame to directory "data/extraction/".

out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.

out_filepath Full filepath and filename to save outputted data frame into.

return_output If TRUE will return outputted data frame into R workspace.

24 extract_diabetes

Details

If an individual is found to have medical codes for both type 1 and type 2 diabetes, the returned value
of diabetes status will be type 1 diabetes. Full details on the algorithm for extracting diabetes status
are given in the vignette: Details-on-algorithms-for-extracting-specific-variables. This vignette can
be viewed by running vignette("help", package = "rcprd").

Specifying db requires a specific underlying directory structure. The SQLite database must be
stored in "data/sql/" relative to the working directory. If the SQLite database is accessed through
db, the connection will be opened and then closed after the query is complete. The same is true
if the database is accessed through db_filepath. A connection to the SQLite database can also
be opened manually using RSQLite::dbConnect, and then using the object as input to parameter
db_open. After wards, the connection must be closed manually using RSQLite::dbDisconnect. If
db_open is specified, this will take precedence over db or db_filepath.

If out_save_disk = TRUE, the data frame will automatically be written to an .rds file in a subdirec-
tory "data/extraction/" of the working directory. This directory structure must be created in advance.
out_subdir can be used to specify subdirectories within "data/extraction/". These options will use
a default naming convetion. This can be overwritten using out_filepath to manually specify the
location on the hard disk to save. Alternatively, return the data frame into the R workspace using
return_output = TRUE and then save onto the hard disk manually.

Specifying the non-vector type codelists requires a specific underlying directory structure. The
codelist on the hard disk must be stored in "codelists/analysis/" relative to the working directory,
must be a .csv file, and contain a column "medcodeid", "prodcodeid" or "ICD10" depending on the
chosen tab. The input to these variables should just be the name of the files (excluding the suffix
.csv). The codelists can also be read in manually, and supplied as a character vector. This option
will take precedence over the codelists stored on the hard disk if both are specified.

Value

A data frame with variable diabetes status.

Examples

Connect
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Create SQLite database using cprd_extract
cprd_extract(aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation", use_set = FALSE)

Define cohort and add index date
pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")

Extract diabetes prior to index date
extract_diabetes(cohort = pat,
codelist_type1_vector = "498521000006119",
codelist_type2_vector = "401539014",
indexdt = "indexdt",
db_open = aurum_extract)

extract_ho 25

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

extract_ho Extract a ’history of’ type variable

Description

Query an RSQLite database and return a data frame with a 0/1 vector depending on whether each
individual has at least one observation with relevant code between a specified time period.

Usage

extract_ho(
cohort,
varname = NULL,
codelist = NULL,
codelist_vector = NULL,
indexdt,
t = NULL,
t_varname = TRUE,
time_prev = Inf,
time_post = 0,
numobs = 1,
db_open = NULL,
db = NULL,
db_filepath = NULL,
tab = c("observation", "drugissue", "hes_primary", "death"),
out_save_disk = FALSE,
out_subdir = NULL,
out_filepath = NULL,
return_output = TRUE

)

Arguments

cohort Cohort of individuals to extract the ’history of’ variable for.

varname Name of variable in the outputted data frame.

codelist Name of codelist (stored on hard disk) to query the database with.
codelist_vector

Vector of codes to query the database with. This takes precedent over codelist
if both are specified.

indexdt Name of variable in cohort which specifies the index date. The extracted vari-
able will be calculated relative to this.

26 extract_ho

t Number of days after indexdt at which to extract the variable.

t_varname Whether to alter the variable name in the outputted data frame to reflect t.

time_prev Number of days prior to index date to look for codes.

time_post Number of days after index date to look for codes.

numobs Number of obesrvations required to return a value of 1.

db_open An open SQLite database connection created using RSQLite::dbConnect, to be
queried.

db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.

db_filepath Full filepath to SQLITE database on hard disk, to be queried.

tab Table name to query in SQLite database.

out_save_disk If TRUE will attempt to save outputted data frame to directory "data/extraction/".

out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.

out_filepath Full filepath and filename to save outputted data frame into.

return_output If TRUE will return outputted data frame into R workspace.

Details

Specifying db requires a specific underlying directory structure. The SQLite database must be
stored in "data/sql/" relative to the working directory. If the SQLite database is accessed through
db, the connection will be opened and then closed after the query is complete. The same is true
if the database is accessed through db_filepath. A connection to the SQLite database can also
be opened manually using RSQLite::dbConnect, and then using the object as input to parameter
db_open. After wards, the connection must be closed manually using RSQLite::dbDisconnect. If
db_open is specified, this will take precedence over db or db_filepath.

If out_save_disk = TRUE, the data frame will automatically be written to an .rds file in a subdirec-
tory "data/extraction/" of the working directory. This directory structure must be created in advance.
out_subdir can be used to specify subdirectories within "data/extraction/". These options will use
a default naming convention. This can be overwritten using out_filepath to manually specify the
location on the hard disk to save. Alternatively, return the data frame into the R workspace using
return_output = TRUE and then save onto the hard disk manually.

Codelists can be specified in two ways. The first is to read the codelist into R as a character vec-
tor and then specify through the argument codelist_vector. Codelists stored on the hard disk
can also be referred to from the codelist argument, but require a specific underlying directory
structure. The codelist on the hard disk must be stored in a directory called "codelists/analysis/"
relative to the working directory. The codelist must be a .csv file, and contain a column "med-
codeid", "prodcodeid" or "ICD10" depending on the input for argument tab. The input to argument
codelist should just be a character string of the name of the files (excluding the suffix ’.csv’). The
codelist_vector option will take precedence over the codelist argument if both are specified.

Value

A data frame with a 0/1 vector and patid. 1 = presence of code within the specified time period.

extract_smoking 27

Examples

Connect
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Create SQLite database using cprd_extract
cprd_extract(aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation", use_set = FALSE)

Define cohort and add index date
pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")

Extract a history of type variable prior to index date
extract_ho(pat,
codelist_vector = "187341000000114",
indexdt = "fup_start",
db_open = aurum_extract,
tab = "observation",
return_output = TRUE)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

extract_smoking Extract smoking status prior to index date.

Description

Extract smoking status prior to index date.

Usage

extract_smoking(
cohort,
varname = NULL,
codelist_non = NULL,
codelist_ex = NULL,
codelist_light = NULL,
codelist_mod = NULL,
codelist_heavy = NULL,
codelist_non_vector = NULL,
codelist_ex_vector = NULL,
codelist_light_vector = NULL,
codelist_mod_vector = NULL,
codelist_heavy_vector = NULL,

28 extract_smoking

indexdt,
t = NULL,
t_varname = TRUE,
db_open = NULL,
db = NULL,
db_filepath = NULL,
out_save_disk = FALSE,
out_subdir = NULL,
out_filepath = NULL,
return_output = TRUE

)

Arguments

cohort Cohort to extract age for.

varname Optional name for variable in output dataset.

codelist_non Name of codelist (stored on hard disk in "codelists/analysis/") for non-smoker
to query the database with.

codelist_ex Name of codelist (stored on hard disk in "codelists/analysis/") for ex-smoker to
query the database with.

codelist_light Name of codelist (stored on hard disk in "codelists/analysis/") for light smoker
to query the database with.

codelist_mod Name of codelist (stored on hard disk in "codelists/analysis/") for moderate
smoker to query the database with.

codelist_heavy Name of codelist (stored on hard disk in "codelists/analysis/") for heavy smoker
to query the database with.

codelist_non_vector

Vector of codes for non-smoker to query the database with.
codelist_ex_vector

Vector of codes for ex-smoker to query the database with.
codelist_light_vector

Vector of codes for light smoker to query the database with.
codelist_mod_vector

Vector of codes for moderate smoker to query the database with.
codelist_heavy_vector

Vector of codes for heavy smoker to query the database with.

indexdt Name of variable which defines index date in cohort.

t Number of days after index date at which to calculate variable.

t_varname Whether to add t to varname.

db_open An open SQLite database connection created using RSQLite::dbConnect, to be
queried.

db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.

db_filepath Full filepath to SQLITE database on hard disk, to be queried.

out_save_disk If TRUE will attempt to save outputted data frame to directory "data/extraction/".

extract_smoking 29

out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.

out_filepath Full filepath and filename to save outputted data frame into.

return_output If TRUE will return outputted data frame into R workspace.

Details

Returns the most recent value of smoking status. If the most recently recorded observation of smok-
ing status is non-smoker, but the individual has a history of smoking identified through the medical
record, the outputted value of smoking status will be ex-smoker. Full details on the algorithm for
extracting smoking status are given in the vignette: Details-on-algorithms-for-extracting-specific-
variables. This vignette can be viewed by running vignette("help", package = "rcprd").

Specifying db requires a specific underlying directory structure. The SQLite database must be
stored in "data/sql/" relative to the working directory. If the SQLite database is accessed through
db, the connection will be opened and then closed after the query is complete. The same is true
if the database is accessed through db_filepath. A connection to the SQLite database can also
be opened manually using RSQLite::dbConnect, and then using the object as input to parameter
db_open. After wards, the connection must be closed manually using RSQLite::dbDisconnect. If
db_open is specified, this will take precedence over db or db_filepath.

If out_save_disk = TRUE, the data frame will automatically be written to an .rds file in a subdirec-
tory "data/extraction/" of the working directory. This directory structure must be created in advance.
out_subdir can be used to specify subdirectories within "data/extraction/". These options will use
a default naming convetion. This can be overwritten using out_filepath to manually specify the
location on the hard disk to save. Alternatively, return the data frame into the R workspace using
return_output = TRUE and then save onto the hard disk manually.

Specifying the non-vector type codelists requires a specific underlying directory structure. The
codelist on the hard disk must be stored in "codelists/analysis/" relative to the working directory,
must be a .csv file, and contain a column "medcodeid", "prodcodeid" or "ICD10" depending on the
chosen tab. The input to these variables should just be the name of the files (excluding the suffix
.csv). The codelists can also be read in manually, and supplied as a character vector. This option
will take precedence over the codelists stored on the hard disk if both are specified.

We take the most recent smoking status record. If an individuals most recent smoking status is a
non-smoker, but they have a history of smoking prior to this, these individuals will be classed as
ex-smokers.

Value

A data frame with variable smoking status.

Examples

Connect
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Create SQLite database using cprd_extract
cprd_extract(aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation", use_set = FALSE)

30 extract_test_data

Define cohort and add index date
pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")

Extract smoking status prior to index date
extract_smoking(cohort = pat,
codelist_non_vector = "498521000006119",
codelist_ex_vector = "401539014",
codelist_light_vector = "128011000000115",
codelist_mod_vector = "380389013",
codelist_heavy_vector = "13483031000006114",
indexdt = "indexdt",
db_open = aurum_extract)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

extract_test_data Extract test data.

Description

Query an RSQLite database and return a data frame containing the most recent test result that meets
specified criteria.

Usage

extract_test_data(
cohort,
varname = NULL,
codelist = NULL,
codelist_vector = NULL,
indexdt,
t = NULL,
t_varname = TRUE,
time_prev = Inf,
time_post = 0,
lower_bound = -Inf,
upper_bound = Inf,
numobs = 1,
keep_numunit = FALSE,
db_open = NULL,
db = NULL,
db_filepath = NULL,
out_save_disk = FALSE,
out_subdir = NULL,

extract_test_data 31

out_filepath = NULL,
return_output = FALSE

)

Arguments

cohort Cohort of individuals to extract the ’history of’ variable for.

varname Name of variable in the outputted data frame.

codelist Name of codelist (stored on hard disk) to query the database with.
codelist_vector

Vector of codes to query the database with. This takes precedent over codelist
if both are specified.

indexdt Name of variable in cohort which specifies the index date. The extracted vari-
able will be calculated relative to this.

t Number of days after indexdt at which to extract the variable.

t_varname Whether to alter the variable name in the outputted data frame to reflect t.

time_prev Number of days prior to index date to look for codes.

time_post Number of days after index date to look for codes.

lower_bound Lower bound for returned values.

upper_bound Upper bound for returned values.

numobs Number of test results to return. Will return most recent values that are in the
valid time and bound ranges.

keep_numunit TRUE/FALSE whether to keep numunitid, medcodeid and obsdate in the out-
putted dataset

db_open An open SQLite database connection created using RSQLite::dbConnect, to be
queried.

db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.

db_filepath Full filepath to SQLITE database on hard disk, to be queried.

out_save_disk If TRUE will attempt to save outputted data frame to directory "data/extraction/".

out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.

out_filepath Full filepath and filename to save outputted data frame into.

return_output If TRUE will return outputted data frame into R workspace.

Details

Specifying db requires a specific underlying directory structure. The SQLite database must be
stored in "data/sql/" relative to the working directory. If the SQLite database is accessed through
db, the connection will be opened and then closed after the query is complete. The same is true
if the database is accessed through db_filepath. A connection to the SQLite database can also
be opened manually using RSQLite::dbConnect, and then using the object as input to parameter
db_open. After wards, the connection must be closed manually using RSQLite::dbDisconnect. If
db_open is specified, this will take precedence over db or db_filepath.

32 extract_test_data

If out_save_disk = TRUE, the data frame will automatically be written to an .rds file in a subdirec-
tory "data/extraction/" of the working directory. This directory structure must be created in advance.
out_subdir can be used to specify subdirectories within "data/extraction/". These options will use
a default naming convetion. This can be overwritten using out_filepath to manually specify the
location on the hard disk to save. Alternatively, return the data frame into the R workspace using
return_output = TRUE and then save onto the hard disk manually.

Codelists can be specified in two ways. The first is to read the codelist into R as a character vec-
tor and then specify through the argument codelist_vector. Codelists stored on the hard disk
can also be referred to from the codelist argument, but require a specific underlying directory
structure. The codelist on the hard disk must be stored in a directory called "codelists/analysis/"
relative to the working directory. The codelist must be a .csv file, and contain a column "med-
codeid", "prodcodeid" or "ICD10" depending on the input for argument tab. The input to argument
codelist should just be a character string of the name of the files (excluding the suffix ’.csv’). The
codelist_vector option will take precedence over the codelist argument if both are specified.

Currently only returns most recent test result. This will be updated to return more than one most
recent test result if specified.

Value

A data frame containing all test results that meets required criteria.

Examples

Connect
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Create SQLite database using cprd_extract
cprd_extract(aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation", use_set = FALSE)

Define cohort and add index date
pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")

Extract most recent test value prior to index date
extract_test_data(pat,
codelist_vector = "187341000000114",
indexdt = "fup_start",
db_open = aurum_extract,
time_prev = Inf,
return_output = TRUE)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

extract_test_data_var 33

extract_test_data_var Extract standard deviation of all test data values over a specified time
period relative to an index date.

Description

Extract standard deviation of all test data values over a specified time period relative to an index
date.

Usage

extract_test_data_var(
cohort,
varname = NULL,
codelist,
codelist_vector,
indexdt,
t = NULL,
t_varname = TRUE,
time_prev = 365.25 * 5,
time_post = 0,
lower_bound = -Inf,
upper_bound = Inf,
db_open = NULL,
db = NULL,
db_filepath = NULL,
out_save_disk = FALSE,
out_subdir = NULL,
out_filepath = NULL,
return_output = FALSE

)

Arguments

cohort Cohort of individuals to extract the ’history of’ variable for.

varname Name of variable in the outputted data frame.

codelist Name of codelist (stored on hard disk) to query the database with.
codelist_vector

Vector of codes to query the database with. This takes precedent over codelist
if both are specified.

indexdt Name of variable in cohort which specifies the index date. The extracted vari-
able will be calculated relative to this.

t Number of days after indexdt at which to extract the variable.

t_varname Whether to alter the variable name in the outputted data frame to reflect t.

time_prev Number of days prior to index date to look for codes.

34 extract_test_data_var

time_post Number of days after index date to look for codes.

lower_bound Lower bound for returned values.

upper_bound Upper bound for returned values.

db_open An open SQLite database connection created using RSQLite::dbConnect, to be
queried.

db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.

db_filepath Full filepath to SQLITE database on hard disk, to be queried.

out_save_disk If TRUE will attempt to save outputted data frame to directory "data/extraction/".

out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.

out_filepath Full filepath and filename to save outputted data frame into.

return_output If TRUE will return outputted data frame into R workspace.

Details

Specifying db requires a specific underlying directory structure. The SQLite database must be
stored in "data/sql/" relative to the working directory. If the SQLite database is accessed through
db, the connection will be opened and then closed after the query is complete. The same is true
if the database is accessed through db_filepath. A connection to the SQLite database can also
be opened manually using RSQLite::dbConnect, and then using the object as input to parameter
db_open. After wards, the connection must be closed manually using RSQLite::dbDisconnect. If
db_open is specified, this will take precedence over db or db_filepath.

If out_save_disk = TRUE, the data frame will automatically be written to an .rds file in a subdirec-
tory "data/extraction/" of the working directory. This directory structure must be created in advance.
out_subdir can be used to specify subdirectories within "data/extraction/". These options will use
a default naming convetion. This can be overwritten using out_filepath to manually specify the
location on the hard disk to save. Alternatively, return the data frame into the R workspace using
return_output = TRUE and then save onto the hard disk manually.

Currently only returns most recent test result. This will be updated to return more than one most
recent test result if specified.

Value

A data frame containing standard deviation of test results.

Examples

Connect
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Create SQLite database using cprd_extract
cprd_extract(aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation", use_set = FALSE)

Define cohort and add index date
pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")

extract_test_recent 35

Extract standard deviation of previous test scores prior to index date
extract_test_data_var(pat,
codelist_vector = "187341000000114",
indexdt = "fup_start",
db_open = aurum_extract,
time_prev = Inf,
return_output = TRUE)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

extract_test_recent Extract test data.

Description

Query an RSQLite database and return a data frame containing the most recent test result that meets
specified criteria.

Usage

extract_test_recent(
cohort,
varname = NULL,
codelist = NULL,
codelist_vector = NULL,
indexdt,
t = NULL,
t_varname = TRUE,
time_prev = 365.25 * 5,
time_post = 0,
lower_bound = -Inf,
upper_bound = Inf,
db_open = NULL,
db = NULL,
db_filepath = NULL,
out_save_disk = FALSE,
out_subdir = NULL,
out_filepath = NULL,
return_output = FALSE

)

Arguments

cohort Cohort of individuals to extract the ’history of’ variable for.

36 extract_test_recent

varname Name of variable in the outputted data frame.

codelist Name of codelist (stored on hard disk) to query the database with.
codelist_vector

Vector of codes to query the database with. This takes precedent over codelist
if both are specified.

indexdt Name of variable in cohort which specifies the index date. The extracted vari-
able will be calculated relative to this.

t Number of days after indexdt at which to extract the variable.

t_varname Whether to alter the variable name in the outputted data frame to reflect t.

time_prev Number of days prior to index date to look for codes.

time_post Number of days after index date to look for codes.

lower_bound Lower bound for returned values.

upper_bound Upper bound for returned values.

db_open An open SQLite database connection created using RSQLite::dbConnect, to be
queried.

db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.

db_filepath Full filepath to SQLITE database on hard disk, to be queried.

out_save_disk If TRUE will attempt to save outputted data frame to directory "data/extraction/".

out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.

out_filepath Full filepath and filename to save outputted data frame into.

return_output If TRUE will return outputted data frame into R workspace.

Details

Specifying db requires a specific underlying directory structure. The SQLite database must be
stored in "data/sql/" relative to the working directory. If the SQLite database is accessed through
db, the connection will be opened and then closed after the query is complete. The same is true
if the database is accessed through db_filepath. A connection to the SQLite database can also
be opened manually using RSQLite::dbConnect, and then using the object as input to parameter
db_open. After wards, the connection must be closed manually using RSQLite::dbDisconnect. If
db_open is specified, this will take precedence over db or db_filepath.

If out_save_disk = TRUE, the data frame will automatically be written to an .rds file in a subdirec-
tory "data/extraction/" of the working directory. This directory structure must be created in advance.
out_subdir can be used to specify subdirectories within "data/extraction/". These options will use
a default naming convetion. This can be overwritten using out_filepath to manually specify the
location on the hard disk to save. Alternatively, return the data frame into the R workspace using
return_output = TRUE and then save onto the hard disk manually.

Codelists can be specified in two ways. The first is to read the codelist into R as a character vec-
tor and then specify through the argument codelist_vector. Codelists stored on the hard disk
can also be referred to from the codelist argument, but require a specific underlying directory
structure. The codelist on the hard disk must be stored in a directory called "codelists/analysis/"
relative to the working directory. The codelist must be a .csv file, and contain a column "med-
codeid", "prodcodeid" or "ICD10" depending on the input for argument tab. The input to argument

extract_time_until 37

codelist should just be a character string of the name of the files (excluding the suffix ’.csv’). The
codelist_vector option will take precedence over the codelist argument if both are specified.

Currently only returns most recent test result. This will be updated to return more than one most
recent test result if specified.

Value

A data frame containing most recent test result that meets required criteria.

Examples

Connect
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Create SQLite database using cprd_extract
cprd_extract(aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation", use_set = FALSE)

Define cohort and add index date
pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")

Extract most recent test value prior to index date
extract_test_data(pat,
codelist_vector = "187341000000114",
indexdt = "fup_start",
db_open = aurum_extract,
time_prev = Inf,
return_output = TRUE)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

extract_time_until Extract a ’time until’ type variable

Description

Query an RSQLite database and a data frame with the time until first code of interest or censoring,
and an event/censoring indicator.

Usage

extract_time_until(
cohort,
varname_time = NULL,

38 extract_time_until

varname_indicator = NULL,
codelist = NULL,
codelist_vector = NULL,
indexdt,
censdt,
censdt_lag = 0,
t = NULL,
t_varname = TRUE,
db_open = NULL,
db = NULL,
db_filepath = NULL,
tab = c("observation", "drugissue", "hes_primary", "death"),
out_save_disk = FALSE,
out_subdir = NULL,
out_filepath = NULL,
return_output = FALSE

)

Arguments

cohort Cohort of individuals to extract the variable for.

varname_time Name of time variable in the outputted data frame.
varname_indicator

Name of event/censoring indicator in the outputted data frame.

codelist Name of codelist (stored on hard disk) to query the database with.
codelist_vector

Vector of codes to query the database with. This takes precedent over codelist
if both are specified.

indexdt Name of variable in cohort which specifies the index date. The extracted vari-
able will be calculated relative to this.

censdt Name of variable in cohort which specifies the censoring date.

censdt_lag Number of days after censoring where events will still be considered, to account
for delays in recording.

t Number of days after indexdt at which to extract the variable.

t_varname Whether to alter the variable name in the outputted data frame to reflect t.

db_open An open SQLite database connection created using RSQLite::dbConnect, to be
queried.

db Name of SQLITE database on hard disk (stored in "data/sql/"), to be queried.

db_filepath Full filepath to SQLITE database on hard disk, to be queried.

tab Table name to query in SQLite database.

out_save_disk If TRUE will attempt to save outputted data frame to directory "data/extraction/".

out_subdir Sub-directory of "data/extraction/" to save outputted data frame into.

out_filepath Full filepath and filename to save outputted data frame into.

return_output If TRUE will return outputted data frame into R workspace.

extract_time_until 39

Details

Specifying db requires a specific underlying directory structure. The SQLite database must be
stored in "data/sql/" relative to the working directory. If the SQLite database is accessed through
db, the connection will be opened and then closed after the query is complete. The same is true
if the database is accessed through db_filepath. A connection to the SQLite database can also
be opened manually using RSQLite::dbConnect, and then using the object as input to parameter
db_open. After wards, the connection must be closed manually using RSQLite::dbDisconnect. If
db_open is specified, this will take precedence over db or db_filepath.

If out_save_disk = TRUE, the data frame will automatically be written to an .rds file in a subdirec-
tory "data/extraction/" of the working directory. This directory structure must be created in advance.
out_subdir can be used to specify subdirectories within "data/extraction/". These options will use
a default naming convetion. This can be overwritten using out_filepath to manually specify the
location on the hard disk to save. Alternatively, return the data frame into the R workspace using
return_output = TRUE and then save onto the hard disk manually.

Codelists can be specified in two ways. The first is to read the codelist into R as a character vec-
tor and then specify through the argument codelist_vector. Codelists stored on the hard disk
can also be referred to from the codelist argument, but require a specific underlying directory
structure. The codelist on the hard disk must be stored in a directory called "codelists/analysis/"
relative to the working directory. The codelist must be a .csv file, and contain a column "med-
codeid", "prodcodeid" or "ICD10" depending on the input for argument tab. The input to argument
codelist should just be a character string of the name of the files (excluding the suffix ’.csv’). The
codelist_vector option will take precedence over the codelist argument if both are specified.

If the time until event is the same as time until censored, this will be considered an event (var_indicator
= 1)

If dtcens.lag > 0, then the time until the event of interest will be the time until the minimum of
the event of interest, and date of censoring.

Value

A data frame with variable patid, a variable containing the time until event/censoring, and a variable
containing event/censoring indicator.

Examples

Connect
aurum_extract <- connect_database(file.path(tempdir(), "temp.sqlite"))

Create SQLite database using cprd_extract
cprd_extract(aurum_extract,
filepath = system.file("aurum_data", package = "rcprd"),
filetype = "observation", use_set = FALSE)

Define cohort and add index date and censoring date
pat<-extract_cohort(system.file("aurum_data", package = "rcprd"))
pat$indexdt <- as.Date("01/01/1955", format = "%d/%m/%Y")
pat$fup_end <- as.Date("01/01/2000", format = "%d/%m/%Y")

Extract time until event/censoring

40 extract_txt_cons

extract_time_until(pat,
codelist_vector = "187341000000114",
indexdt = "fup_start",
censdt = "fup_end",
db_open = aurum_extract,
tab = "observation",
return_output = TRUE)

clean up
RSQLite::dbDisconnect(aurum_extract)
unlink(file.path(tempdir(), "temp.sqlite"))

extract_txt_char Read in txt file with all colClasses = "character"

Description

Read in txt file with all colClasses = "character"

Usage

extract_txt_char(filepath, ..., select = NULL)

Arguments

filepath File path to raw .txt file

... Arguments to pass onto utils::read.table

select Character vector of variable names to select

extract_txt_cons Read in raw .txt consultation file

Description

Read in raw .txt consultation file

Usage

extract_txt_cons(filepath, ..., select = NULL)

Arguments

filepath File path to raw .txt file

... Arguments to pass onto utils::read.table

select Character vector of variable names to select

extract_txt_death 41

extract_txt_death Read in raw ONS death data file

Description

Read in raw ONS death data file

Usage

extract_txt_death(filepath, ..., select = NULL)

Arguments

filepath File path to raw .txt file

... Arguments to pass onto utils::read.table

select Character vector of variable names to select

extract_txt_drug Read in raw .txt drugissue file

Description

Read in raw .txt drugissue file

Usage

extract_txt_drug(filepath, ..., select = NULL)

Arguments

filepath File path to raw .txt file

... Arguments to pass onto utils::read.table

select Character vector of variable names to select

42 extract_txt_linkage

extract_txt_hes_primary

Read in raw HES primary diagnoses file

Description

Read in raw HES primary diagnoses file

Usage

extract_txt_hes_primary(filepath, ..., select = NULL)

Arguments

filepath File path to raw .txt file

... Arguments to pass onto utils::read.table

select Character vector of variable names to select

extract_txt_linkage Read in linkage eligibility file

Description

Read in linkage eligibility file

Usage

extract_txt_linkage(filepath, ...)

Arguments

filepath File path to raw .txt file

... Arguments to pass onto utils::read.table

extract_txt_obs 43

extract_txt_obs Read in raw .txt observation file

Description

Read in raw .txt observation file

Usage

extract_txt_obs(filepath, ..., select = NULL)

Arguments

filepath File path to raw .txt file

... Arguments to pass onto utils::read.table

select Character vector of variable names to select

extract_txt_pat Read in raw .txt patient file

Description

Read in raw .txt patient file

Usage

extract_txt_pat(filepath, ..., set = FALSE)

Arguments

filepath File path to raw .txt file

... Arguments to pass onto utils::read.table

set If TRUE will create a variable called set which will contain the number that
comes after the word ’set’ in the file name.

44 extract_txt_ref

extract_txt_prob Read in raw .txt problem file

Description

Read in raw .txt problem file

Usage

extract_txt_prob(filepath, ..., select = NULL)

Arguments

filepath File path to raw .txt file

... Arguments to pass onto utils::read.table

select Character vector of variable names to select

extract_txt_ref Read in raw .txt referral file

Description

Read in raw .txt referral file

Usage

extract_txt_ref(filepath, ..., select = NULL)

Arguments

filepath File path to raw .txt file

... Arguments to pass onto utils::read.table

select Character vector of variable names to select

implement_output 45

implement_output Internal function to implement saving extracted variable to disk or
returning into R workspace.

Description

Will save extracted variable to disk if out_save_disk = TRUE. Note it relies on correct underlying
structure of directories. Will output extracted variable into R workspace if return_output = TRUE.

Usage

implement_output(
variable_dat,
varname,
out_save_disk,
out_subdir,
out_filepath,
return_output

)

Arguments

variable_dat Dataset containing variable

varname Name of variable to use in filename

out_save_disk If TRUE will save output to disk

out_subdir Sub-directory of data/ to save output into

out_filepath Full fiilepath to save dat onto

return_output If TRUE returns output into R workspace

Index

add_to_database, 2

combine_query, 4
combine_query.aurum, 6
combine_query_boolean, 8
combine_query_boolean.aurum, 9
connect_database, 10
cprd_extract, 11
create_directory_system, 13

db_query, 5, 7, 9, 14
delete_directory_system, 15

extract_bmi, 16
extract_cholhdl_ratio, 19
extract_cohort, 22
extract_diabetes, 22
extract_ho, 25
extract_smoking, 27
extract_test_data, 30
extract_test_data_var, 33
extract_test_recent, 35
extract_time_until, 37
extract_txt_char, 40
extract_txt_cons, 40
extract_txt_death, 41
extract_txt_drug, 41
extract_txt_hes_primary, 42
extract_txt_linkage, 42
extract_txt_obs, 43
extract_txt_pat, 43
extract_txt_prob, 44
extract_txt_ref, 44

implement_output, 45

46

	add_to_database
	combine_query
	combine_query.aurum
	combine_query_boolean
	combine_query_boolean.aurum
	connect_database
	cprd_extract
	create_directory_system
	db_query
	delete_directory_system
	extract_bmi
	extract_cholhdl_ratio
	extract_cohort
	extract_diabetes
	extract_ho
	extract_smoking
	extract_test_data
	extract_test_data_var
	extract_test_recent
	extract_time_until
	extract_txt_char
	extract_txt_cons
	extract_txt_death
	extract_txt_drug
	extract_txt_hes_primary
	extract_txt_linkage
	extract_txt_obs
	extract_txt_pat
	extract_txt_prob
	extract_txt_ref
	implement_output
	Index

